The Biological Repository (BioR) and BioRTools
User Guide v2.2.x

By Daniel Quest, Mike Meiners, Patrick Duffy, Raymond Moore, The BioR Team, and the BioR users.

Table of Contents:
1. Installation:

Installing on a Stand-Alone Server or Workstation
Installing the BioR software

Prerequisites:
Java Installation:

Tabix:

BGZIP:

SNPEFF+VEP:

BioR Toolkit Installation:

Installing the Biological Repository Catalogs
Instructions for Mayo Users.
Installing BioR Tools from Source
Java Heap Size

2. Overview
Introduction

Data Modeling
BioR Catalog Shortcut

Finding out what is in a Catalog
Showing the Commands in BioR ToolKkit
Command

Input, Output
Description

Pretty Print
Get all Variants in a Gene

3. BioR Catalogs
The BioR Catalog Format
Catalog Creation Details
Catalogs Available In BioR
Creating a Catalog in Seconds
4. Examples Matching Genomic Features
Positional Matches Using Tabix
Annotating Variants with Genes that Overlap
Compressing output to enforce 1-1 semantics
5. Expanded Genes (Xrefs)
Indexing Catalogs
Looking Up Information about a Gene
Example of Walking Cross References
Generating an OMIM Disorder Report for a Set of rsIDs
Putting it all Together — Making a Genomic Feature Annotation Program
6. Examples Matching Alleles (bior same variant)

Putting it All Together Building an AF Pipeline

7. Extracting Data with JSONPaths (bior drill)
8. Command Line Tools
9. Mixing In Scripts and Languages
To find all overlapping genes that are not the same gene:
10. Common Problems
Handling VCF Files with VERY large headers
Large Memory Requirements
BioR exits with some error I don’t understand
11. Creating Catalogs
Indexing your Samples
Creating Custom Catalogs
The Publication Process
Parsing and Converting the Data
Indexing the Data for Coordinate Based Search
Hints on Creating Indexes on Custom Catalogs
Use BioR to map SNP on rsID and find overlapping genes.
Case Study: Creating a Report that Maps rsIDs to Genes.
12. Sun Grid Engine
Enable SGE at Mayo
At Mayo, for example, you can log onto an RCF system, such as crick7, then run “mayobiotools” and
choose “69. ogs”, then select the available option, choose “0” to save and exit, then log out and back in
again. You should now be able to run SGE commands such as “gsub”.

Multiple Cores
Virtual Memory

Resources for a Toolkit Pipeline
Status of your Command

The Biological Repository (BioR) and BioRTools
User Guide v 2.2.x

BioR is an annotation engine. Inside Mayo, it's primary use is to annotate human variation, but it is not limited to that - itis a
general purpose genomic data integration tool that enables coordinate based searches and joins based on strings. BioR is like
programming using lego blocks, each block may not be exactly what you want, but you can put the blocks together to create
programs extremely rapidly. The component ‘blocks’ include all existing UNIX commands, stand alone tools (e.g. bedtools), and
the bior_toolkit. This user guide will help get you up to speed in how to use BioR in one document. Please note that BioR is a
complex system, and you should have some experience with UNIX (especially pipes) before using BioR. BioR consists of two parts
1) the BioR toolkit which depends on Java (some commands also depend on SNPEFF and VEP) and 2) the BioR catalogs which

are the data files used by the system. A BioR catalog is basically a BED-JSON hybrid file that is indexed using Tabix for coordinate
based search and BioR’s own indexing system for string matching based searches.

1. Installation:

Installing on a Stand-Alone Server or Workstation (or on a server on the cloud)
This includes Java JDK 1.7, Tabix and BGZIP. Most BioR functions will still work if you don’t install SNPEFF/VEP and all of their
dependencies, but bior_annotate will have limited functionality and bior_vep and bior_snpeff will not work. The environment

variable, SBIOR LITE HOME represents the location where BioR is installed.

Installing the BioR software

System Requirements

Linux/Unix Distribution: preferably Ubuntu 12.04.

Memory: 4gb (8gb prefered)

Architecture: 64 bit system

Disk Space: 30Gb+ (Toolkit requires 1GB, catalogs can very, please see the BioR download website for
more details)

Prerequisites:

BioR is written in Java, so in principle it will work on any machine, but it depends on some command
line tools (e.g. SNPEFF, VEP) that are not so friendly. The development team has BioR working on both
Macintosh and Linux. To install, first make sure first that Java 1.6+ is installed and on your path (Java
1.7 is preferred). Then download the BioR executable and place it in your path.

Java Installation:

We prefer to use the official version of Java directly from Oracle (Sun). Use uname -a on your Linux
machine to determine the version of Java that you should be running on your server. Sign up for an
Oracle account (if needed) and download the correct version. Copy it to your server (i.e. ~ - your home
directory for this guide). You can run java -version to see if it is already installed on your server to
skip this step.

Download Link: http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installation Instructions:
Check the version of your Linux OS by typing ‘uname -a’ at the command line. if it says x86_64, you have a 64bit system (most

http://www.google.com/url?q=http%3A%2F%2Fwww.oracle.com%2Ftechnetwork%2Fjava%2Fjavase%2Fdownloads%2Findex.html&sa=D&sntz=1&usg=AFQjCNGWCcKCIFm3bfDWtU41j6HJzekqNQ

systems). Based on the version of your 0S, download Java directly from Oracle. We recommend JDK 1.7. (I usually download it
to my home computer and then scp it up to the server using winscp or scp from the command prompt on a mac. This will result in
a file in your home directory called jdk-7u45-linux-i586.tar.gz. Unzip Java and set your JAVA_HOME.

Once you have java downloaded to your PC/Mac, you will need to copy it up to your server. If you have
a mac, you can use scp from the command line, on Windows, you can use WinSCP or similar program.
For example to upload from my Mac I use the following scp command (after downloading from Oracle):
$ scp -1 biorloginkey.pem ~/Downloads/jdk-7u45-1inux-x64.tar.gz
ubuntu@10.148.2.10:~/3dk-7ud45-1inux-x64.tar.gz

Yours will differ because your cloud server will be on a different IP and you will have a different
credential file (the .pem).

This will place a copy of Java in my home directory (~ = /home/ubuntu) Extract it.
ubuntu@biorinstall2:~$ pwd

/home /ubuntu

ubuntu@biorinstall2:~$ tar -zxvf jdk-7ud45-linux-x64.tar.gz

Then you will need to put it in your path:

ubuntu@biorinstall2:~$ 1s

bior 2.2.0 Dbior 2.2.0.tar.gz Jdk1l.7.0 45 jdk-7ud45-linux-x64.tar.gz
ubuntu@biorinstall2:~$ JAVA HOME=/home/ubuntu/jdkl.7.0 45
ubuntu@biorinstall2?2:~$ PATH=$PATH:SHOME/bin: $JAVA_HOME/bin
ubuntu@biorinstall2:~$ export SJAVA HOME

-bash: export: °/home/ubuntu/jdkl.7.0 45': not a valid identifier
ubuntu@biorinstall2:~$ export JAVA HOME

ubuntu@biorinstall2:~$ export PATH

ubuntu@biorinstall2:~$ javac

(usage information should be here, if not it is not correctly installed)

[put these commands in ~/.bash_profile so that they are in place next time I log in.

Tabix / BGZIP:

Install:

Make sure you have a version of bgzip2 installed:
$ sudo apt-get install bzip2

You may also be able to install tabix in the same way:
$ sudo apt-get install tabix

Tabix Manual install:

If the apt-get command fails, you can download and install it yourself:
Download Link: http://sourceforge.net/projects/samtools/files/tabix/

In this case, we chose the 0.2.6 version.

Download from the link above and unzip:
$ bunzip2 tabix-0.2.6.tar.bz2

$ tar -xvf tabix-0.2.6.tar

$ cd tabix-0.2.6/

Compile Tabix:

$ make

http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsamtools%2Ffiles%2Ftabix%2F&sa=D&sntz=1&usg=AFQjCNGh5x0Dsa7vJslowN6ie4BPdi2s2Q

Add Tabix and BGZIP to your path:

S PATH=~/tabix-0.2.6:$PATH
$ which tabix
/home/dquest/tabix-0.2.6/tabix

You may want this command also to be in your .bashrc file so that tabix, bgzip work properly.

SNPEFF+VEP:

SNPEFF+VEP have complex setups, please see below in the user guide on how to set them up and get
them working with the toolkit. Note, you will not need these tools for most of the BioR commands or
the quickstart.

BioR Toolkit Installation:

Download Link:
You can download BIOR and Catalog datasources from http://bioinformaticstools.mayo.edu/research/bior/.

Installation Instructions:

1) Download the toolkit: (e.g.)
$ wget https://s3-us-west-2.amazonaws.com/mayo-bic-tools/bior/bior 2.2.0.tar.gz

2) Unzip the bior_version zip file you downloaded. (unzip bior_version.zip -d target directory) e.g.:
$ tar -xzvf bior_2.2.0.tar.gz

3) Make sure all your files in bior_pipeline project are executable:
$ cd bior_2.2.0/
$ chmod -R +x bin/

4) Now you need to setup the environment variables and add to the path.

$ export BIOR_LITE_HOME=YOUR BIOR_FOLDER

$ export PATH=$BIOR_LITE_HOME /bin:$PATH

There is a quick script that comes with BioR that can help with the setup: setupEnv.sh. Just source the
file:

$ source setupEnv.sh

You will need to setup your paths each time you login so it might make sense to add this command into
your .bash_profile/.bashrc.

5) Now try bior_and press tab key twice on terminal. Now you should see all bior commands
displayed. If they are not being displayed, look inside the setupEnv.sh and change the paths so that
they work with your envorinment. (BioR is using BASH). Change it as needed or ask a system
administrator for help. Make sure you can type bior_(tab tab) and get all of the commands back before
moving on to the next step.

6) Verify that it is installed correctly by typing bior_pretty_print -h. You should see a help message,
if you see an error like “java: not found” then you need to install java correctly.

http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2Fresearch%2Fbior%2F&sa=D&sntz=1&usg=AFQjCNFqZFoAZrPJiMH1sjP12XBtE7hxZg
http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2Fresearch%2Fbior%2F&sa=D&sntz=1&usg=AFQjCNFqZFoAZrPJiMH1sjP12XBtE7hxZg
https://www.google.com/url?q=https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fmayo-bic-tools%2Fbior%2Fbior_2.1.1.tar.gz&sa=D&sntz=1&usg=AFQjCNH7-By3jqADnDoMkyIZFsN0JjRNmA

Now you have successfully installed the toolkit. The quickstart guide is a good place to go to check if
your toolkit is functioning properly and to run some biologically motivated examples contributed from
our bioinformaticians (they even use versions of these in production!).

One of the hardest to set up commands is bior_annotate. Bior_annotate is a kitchen sink command and
requires the catalogs, command line tools and all dependencies be installed properly on your system.
The next three sections will go over how to install all of the catalogs it needs, and how to install
SNPEFF and VEP. For now, it is important to highlight the bior.properties file in
$BIOR_LITE_HOME/conf. For example:

S pwd

/home/ubuntu/bior 2.2.0/conf

ubuntu@biorinstall2:~/bior 2.2.0/conf$ 1s

allCatalogs.columns.properties allCatalogs.columns.tsv Dbior.properties cli
log4]j.properties tools

Edit the configuration file so that all tools, catalogs, and paths are consistent with your install locations
(see the next section).

Installing the Biological Repository Catalogs

Catalogs can be found at $BIOR_CATALOG ($bior in this documentation) If you are doing a stand alone
server, download the catalog flat files and place them locally on your server in a similar directory
structure. BioR Tools does not make any assumptions about the location of catalogs relative to each
other, but it does assume that tabix indexes are in the same directory as the compressed catalog and
that ID indices are in a folder called index in the same directory as the catalog. However, bior_annotate
does have a configuration file that will make that command not work if you don’t change the
configuration file or place the data repositories in the same location as we do at Mayo (or provide a
symbolic link). We put the data here: $BIOR_CATALOG=/data5/bsi/catalogs/bior/v1. More details for
installing the catalog structure properly on a stand alone server can be found in the next section
“Installing on a Stand-Alone Server or Workstation” (next).

1) use wget to get all of the BioR catalogs and place them in /data. There are two scripts:
$BIOR_LITE_HOME /scripts/downloadFullCatalogs.sh

and

$BIOR_LITE_HOME/scripts/downloadSmallCatalogs.sh

that can be used to easily download the production catalogs and example catalogs respectively. For
example do this to download the full catalogs:

$ cd $BIOR LITE HOME
$ cd scripts
$./downloadFullCatalogs.sh /data/

This will download and extract the downloaded catalogs into the /data directory.

3) Now, for bior_annotate to work, you will need to set the properties (for all of the rest of BioR, you
are good to go).

You will find a file named bior.properties under the folder conf in your bior_version directory (See the
section above on installing the toolkit). This is the file where you need to set the tools path and home
path of catalogs directory. Tool commands like bior_vep and bior_snpeff and as well as bior_annotate

make use of this properties file. My file is here:

S pwd

/home/ubuntu/bior 2.2.0/conf

$ 1s

allCatalogs.columns.properties allCatalogs.columns.tsv bior.properties cli
log4]j.properties tools

The rest of the setup guide will assume that your bior.properties file is set up as follows (note fileBase
= /data/ and it MUST end in a slash), the paths you may need to change are in bold:

$ cat bior.properties
#H#

NOTE: These keys are defined in BiorProperties.java and must match the keys in the enum there

i

###SNPEFF
SnpEffJar=/data/snpEff 2 0_5d/snpEff.Jjar
SnpEffConfig=/data/snpEff 2 0 5d/snpEff.config
SnpEffMaxHeap=4g

###VEP
BiorVepPerl=/usr/bin/perl

BiorVep=/data/variant_effect predictor/variant_effect predictor.pl
BiorVepCache=/data/variant effect predictor/cache/

###BIOR TREAT
AnnotateMaxLinesInFlight:

NOTE: Min = 2. Default = 10. Max = 50 (could do more, but not recommended)

WARNING: Do not increase it to much more than 50 or you may encounter a hang state, especially
with a high number of fanouts, as the process buffers will overflow!
AnnotateMaxLinesInFlight=10

NOTE: make sure the “fileBase” path ends with a slash!

fileBase=/data/

genesFile=NCBIGene/GRCh37 pl0/genes.tsv.bgz

bgiFile=BGI/hgl9/LuCAMP_ 200exomeFinal.maf GRCh37.tsv.bgz
espFile=ESP/build37/ESP6500SI_ GRCh37.tsv.bgz

hapMapFile=hapmap/2010-08 phaseII+III/allele fregs GRCh37.tsv.bgz
dbsnpFile=dbSNP/137/00-A11 GRCh37.tsv.bgz
dbsnpClinvarFile=dbSNP/137/clinvar 20130226 GRCh37.tsv.bgz
cosmicFile=cosmic/v63/CosmicCompleteExport GRCh37.tsv.bgz

kGenomeFile=1000 genomes/20110521/ALL.wgs.phasel release v3.20101123.snps_indels sv.sites GRCh37.tsv.b
gz

blacklistedFile=ucsc/hgl9/wgEncodeDacMapabilityConsensusExcludable GRCh37.tsv.bgz
repeatFile=ucsc/hgl9/rmsk GRCh37.tsv.bgz

regulationFile=ucsc/hgl9/oreganno GRCh37.tsv.bgz
uniqueFile=ucsc/hgl9/wgEncodeDukeMapabilityRegionsExcludable GRCh37.tsv.bgz
tssFile=ucsc/hgl9/switchDbTss GRCh37.tsv.bgz

tfbsFile=ucsc/hgl9/tfbsConsSites GRCh37.tsv.bgz
enhancerFile=ucsc/hgl9/vistaEnhancers GRCh37.tsv.bgz

conservationFile=ucsc/hgl9/phastConsElements46wayPrimates GRCh37.tsv.bgz
conservationFile=ucsc/hgl9/phastConsElements46way GRCh37.tsv.bgz
hgncFile=hgnc/2012 08 12/hgnc GRCh37.tsv.bgz
hgncIndexFile=hgnc/2012 08 12/index/hgnc_GRCh37.Entrez Gene ID.idx.h2.db
hgncEnsemblGeneIndexFile=hgnc/2012 08 12/index/hgnc GRCh37.Ensembl Gene ID.idx.h2.db
omimFile=omim/2013 02 27/genemap GRCh37.tsv.bgz
omimIndexFile=omim/2013 02 27/index/genemap GRCh37.MIM Number.idx.h2.db
mirBaseFile=mirbase/releasel9/hsa GRCh37.p5.tsv.bgz

Now in the file you need to set fileBase="catalogs directory” value to your catalogs directory.

If you chose to download the chr17-only catalogs, make sure to update the paths in the
bior.properties file as appropriate.

Some users notice a problem with Sage (an error in the bior.log file when running with the --log flag) not
being able to make a connection. If you get this error, make sure the SAGE_ENVIRONMENT is set as
follows: SAGE_ENVIRONMENT=null, (or =prod)

in the Global.properties file (found in: /fhome/ubuntu/bior_2.2.0/conf/cli on the example system, or
$BIOR_LITE_HOME/conf/cli)

Example : fileBase=/data/
Next step is tools installation.

Dependant Tools Installation and Setup
We have integrated two tools SNPEff and Variant Effect Predictor (VEP) into our toolkit.
Variant Effect Predictor (VEP):

The Version of VEP we support is 2.7.
http://useast.ensembl.org/info/docs/tools/vep/script/vep download.html#versions

NOTE: There is a breaking change in the latest VEP tools that replaces the --hgnc flag with
--symbol. Make sure to use version 2.7 to avoid this!

You can follow the installation instructions in the above page. Here is how we install it step by step:

1) Download VEP from their website:

$ cd /data

$ curl -o variant effect predictor.vé69.tar.gz
“http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl-tools/scripts/variant effect predictor
.tar.gz?view=tar&root=ensemblé&pathrev=branch-ensembl-69"

NOTE: The quotes in the command above can cause problems when copy-and-pasting from this
document into your terminal windows. If that is the case, try deleting the quotes at the command line
and adding them back in by typing them manually.

2) Extract
$ tar -xzvf variant effect predictor.tar.gz

3) Make sure you have Perl version 14 on your computer:
S perl -v

4) If the perl is the correct version, and you have admin rights, you can now install the Perl libraries
needed by VEP:

S sudo apt-get install libwww-perl

$ sudo perl -MCPAN -e'force install "LWP::Simple™'

$ sudo apt-get install libdbi-perl

$ sudo apt-get install libdbd-mysqgl-perl

You can also download the Perl libraries separately and point your PERL5LIB environment variable to
them. For more information, see:
http://linuxgazette.net/139 /okopnik.html

5) Then run the VEP installer:

http://www.google.com/url?q=http%3A%2F%2Fuseast.ensembl.org%2Finfo%2Fdocs%2Ftools%2Fvep%2Fscript%2Fvep_download.html%23versions&sa=D&sntz=1&usg=AFQjCNFJfUKK3tV-yDufFLgb0Jxi8ugnoQ
http://www.google.com/url?q=http%3A%2F%2Flinuxgazette.net%2F139%2Fokopnik.html&sa=D&sntz=1&usg=AFQjCNE3tjDzaIrh70psXfRM5nT7g5ZhIw

cd variant_effect predictor
perl INSTALL.pl [options]

6) Make sure to download the needed cache files or correct the install (in my case the download script
failed)

It may ask you to install cache files into your ~/.vep directory. If you choose to do this, and it
succeeds, make sure to update the bior.properties file outlined in a previous step to point to this
directory. Choose the two options for homo_sapiens by specifying them both, separated by a space:

25 : homo sapiens refseq vep 73.tar.gz
26 : homo sapiens vep 73.tar.gz

You may follow instructions at http://www.ensembl.org/info/docs/api/api_installation.html which

provides alternate options for the API installation. Example download of the cache files.

$ nohup wget
ftp://ftp.ensembl.org/pub/release-69/variation/VEP/homo sapiens vep 69.tar.gz &

$ nohup wget
ftp://ftp.ensembl.org/pub/release-69/variation/VEP/homo sapiens vep 69 sift poly
phen.tar.gz &

7) unzip the alignment files to a directory called “cache” inside the same directory as VEP.
cd /data/variant effect predictor/
mkdir cache
cd cache
tar -zxvf ../homo_sapiens vep 69 sift polyphen.tar.gz
tar -zxvf ../homo_sapiens vep 69.tar.gz

8) Change the bior.properties file to point at the version of vep that you just installed.
#HH#VEP ===== === ============= === ===
BiorVepPerl=/usr/bin/perl
BiorVep=/data/variant effect predictor/variant effect predictor.pl
BiorVepCache=/data/variant effect predictor/cache/

9) Test that VEP works stand-alone on a VCF file to ensure it is installed correctly. Here is an example
command (note there is an example.vcf is in $BIOR_LITE_HOME /examples/quickstart2 /example.vcf but

any properly formatted vcf will work):
perl /data/variant effect predictor/variant effect predictor.pl -i example.vcf -o
STDOUT -dir /data/variant effect predictor/cache/ -vcf -polyphen b -sift b --offline

NOTE: If you downloaded the small catalogs (for chr17 only), you may want to use the
$BIOR_LITE_HOME/examples/quickstart2/example_chr17.vcf file for all subsequent examples
(instead of example.vcf), as this provides variants within chromosome 17, specifically within the
BRCA1 gene range.

10) Test that VEP works inside the BioR wrapper:

cat example.vcf | bior vep > vepAnnotated.tjson

http://www.google.com/url?q=http%3A%2F%2Fwww.ensembl.org%2Finfo%2Fdocs%2Fapi%2Fapi_installation.html&sa=D&sntz=1&usg=AFQjCNHmMMRnbu_UhA03XUygZiVp9qzDFw

NOTE: If VEP fails here, try it again with the --log flag, then cat the bior.log file. If it shows an error
similar to “Unable to locate file on classpath: /coreutils-8.21/linux-i686/stdbuf”, then you are most likely
trying to run it on a 32-bit OS. This is currently not supported. Please try on a 64-bit OS for now.

SNPEff:

Currently we support SNPEff verison 2.0.5d.This was recommended by GATK for worst pick logic.
Installation files and instructions can be found at

http://snpeff.sourceforge.net/download.html

If you using linux or Mac you can just use wget command to download the files in steps 2 and 3. After
doing so, make sure to change SNPEFF config file snpEff.config to include the path to the database you
downloaded.

1) Make sure you have unzip installed so you can extract the zip file (on ubuntu linux, use apt-get.
Use yum or whatever package manager to install unzip on other boxes):
$ sudo apt-get install unzip

2) Extract SNPEFF

$ cd /data

$ wget http://sourceforge.net/projects/snpeff/files/snpEff v2 0 5d core.zip
$ unzip snpEff v2 0 5d core.zip

3) By default, SNPEFF expects that you place the data in a directory called ‘data’ residing in the same

directory as snpEff.jar (SNPEFF_HOME). Extract the data for SNPEFF to SNPEFF_HOME /data.

$ cd snpEff 2 0 5d

S wget

http://sourceforge.net/projects/snpeff/files/databases/v2 0 5/snpEff v2 0 5 GRCh37.64.zip
$ unzip snpEff v2 0 5 GRCh37.64.zip

(This will create the /data/snpEff 2 0 5d/data/ directory)

4) After you have installed SNPEff, set the paths in bior.properties file located in conf folder under
your bior_pipeline directory.

Example:

###SNPEFF ========================so=oooooozszoosss==s
SnpEffJar=/data/snpEff_2_0_5d/snpEff.jar

SnpEffConfig=/data/snpEff_2_0_5d/snpEff.config

5) check that SNPEFF works as a stand alone tool. This will take at least a minute to load the database
before it starts processing vcf lines (note there is an example.vcfis in

$BIOR_LITE_HOME /examples/quickstart2 /example.vcf but any properly formatted vcf will work).
cat example.vcf | java -Xmx4g -jar /data/snpEff 2 0 5d/snpEff.jar eff -c
/data/snpEff 2 0 5d/snpEff.config -v -o vcf -noLog -noStats GRCh37.64

NOTE: If you are running on a system with less than 4GB of memory, this will throw an exception. Run again with
the --log flag, then check the bior.log file for an error similar to “AbnormalEXxitException”. Please change the
-Xmx4g option to a smaller value to fit your hardware limitations (such as -Xmx2g). Likewise, if you have more
memory than that, or get an exception because SnpEff runs out of memory, you can up the memory as well.

6) Run the BioR wrapper for SNPEFF:
cat example.vcf | bior_snpeff > annotated.tjson

http://www.google.com/url?q=http%3A%2F%2Fsnpeff.sourceforge.net%2Fdownload.html&sa=D&sntz=1&usg=AFQjCNFC7HXCHt19HzTleRgk2aPP_CBmZw
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsnpeff%2Ffiles%2FsnpEff_v2_0_5d_core.zip&sa=D&sntz=1&usg=AFQjCNGEeZ_zxDHFj190NCHhN1Ds7EHbMg
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsnpeff%2Ffiles%2Fdatabases%2Fv2_0_5%2FsnpEff_v2_0_5_GRCh37.64.zip&sa=D&sntz=1&usg=AFQjCNF1IKQB5xoy95IBf72VEYqUqs_Png

NOTE: As before, the memory allocated to SnpEff might be a problem. For the bior_snpeff command,

you can specify the max heap size by altering this field in the bior.properties file:
SnpEffMaxHeap=4g

Instructions for Mayo Users.

There is no need to install anything, just use the mayobiotools command on the RCF. Please read the
drupal documentation here: http://bsiweb.mayo.edu/bior-20-installing-command-line-client

Installing BioR Tools from Source

Source installation requires that you have both Java 1.7 and Maven installed and on your path. It also
requires that you have access to the Mayo NEXUS servers or you place several libraries in your ~/.m2
directory.

If you have troubles installing BioR or compiling it, please contact the BioR Team
(dlrstitbiorall@mayo.edu) so we can update the documentation and make the process easier.

Java Heap Size

On some machines, the default JVM size is 2GB. This is very large for BioR. By default the BioR toolkit
is capped at 128M. To change this setting, change the Maven bior_pipeline/pom.xml (e.g.
<jvmOpts>-Xmx128m</jvmOpts>).

2. Overview

Introduction

BioR uses a Pipe-And-Filter architecture. Data to be annotated by BioR is streamed through a pipeline,
a sequence of one or more pipes. Pipes is based on Flow Based Programming by]J.P. Morrison.
DataFlow-Article, Flow-Based-Programing.

http://www.google.com/url?q=http%3A%2F%2Fbsiweb.mayo.edu%2Fbior-20-installing-command-line-client&sa=D&sntz=1&usg=AFQjCNGJsI3cE0Z_bcrdOlkXkLtgfkBYFw
http://www.google.com/url?q=http%3A%2F%2Fwww.dossier-andreas.net%2Fsoftware_architecture%2Fpipe_and_filter.html&sa=D&sntz=1&usg=AFQjCNHdXdQC4O8nK9EZEUCLFvGR2Jau-g
http://www.google.com/url?q=http%3A%2F%2Fwww.drdobbs.com%2Fdatabase%2Fdataflow-programming-handling-huge-data%2F231400148%3Fpgno%3D2&sa=D&sntz=1&usg=AFQjCNGIBZakR7__y1F_Z1RCc0Q9h2ucPw
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2FFlow-Based-Programming-2nd-Application-Development%2Fdp%2F1451542321%2F&sa=D&sntz=1&usg=AFQjCNHERLu7_Fu4DG5wuNR3YlghMSM8Ww

g PASS DPsL00

£
d

]
ARG >

PASS DPw
PAGS [P
PASE DiPw
FASS [DiP=

oo - -

100 present inlevabed 0001
100 presant oheated 02X

100 pressent damaging 1009

ABMA20SE . A T

IPMEIGED . G T FASS DP=1D0

SM1TSIE . A G PASS DP=100

50T} . € G N PASS DP=1D0
Pipeline

e i e i e S b

Da

Data

Index

Data

RefData

A

Figure 1: BioRTools works by adding annotation to the right on the original file.

BioR leverages UNIX pipes to flow data from program to program. As BioR programs work on the data,
they place annotation to the right (the red, blue and green columns in Figure 1).

Data Modeling

BioR has adopted a lightweight approach to modeling annotation data. Only core annotation fields are
modeled to enable supported search capabilities (e.g. coordinate search, accession ID search).
Anything not classified as core is modeled into a "schema-free" data structure.

- -

DB
Y Export
BioR Catalog Shortcut

d

Annotation

Core

Attributes

Schema-free

EWIET

>

BioR commands commonly use long paths to files. One of the first things you will want to do when

using BioR is to make an alias to the location of the BioR catalogs. For example if the BioR catalogs are
located in spior
Then, on bash, execute the following command at the command line:

$ export bior=/data/path/

You may want to put this command in your .bashrc or .bash_profile so that the $bior environment
variable shows up next time you log in.

Finding out what is in a Catalog

Each data source is 'published’ into a BioR catalog file for use by the BioR scripts. A Catalogis a
collection of files (both data and indexes) that is understood by the BioR Pipes infrastructure. BioR's
reference data consists of the raw files downloaded /updated and made available to BioR users. These
files ARE NOT catalogs. Catalogs are transformed into the BioR standard catalog structure so that pipes
can work on the content. BioR catalogs are bgziped files® that contain 4 columns (_landmark, _minBP,
_maxBP, and JSON). A more comprehensive description of the BioR catalog format is in Chapter 3.

To see what is in a catalog, use the zcat command (gzcat on a mac) followed by the catalog filename,
followed by less:

$ zcat $bior/NCBIGene/GRCh37 pl0O/genes.tsv.bgz | less

1 10954 11507

{" type":"gene"," landmark":"1"," strand":"+"," minBP":10954," maxBP":11507,"gene":"LOC100506145",6"
te":"Derived by automated computational analysis using gene prediction method: GNOMON. Supporting
evidence includes similarity to: 1 Protein","pseudo":"","GeneID":"100506145"}

Unix less is a good-low-memory command to look at data. Type g <enter>to quit less. Type
man less atthe command line to see how to use the less command. You can use up and down arrows
to scroll through the data a line at a time or ‘f’ and ‘b’ to scroll a page at a time.

Showing the Commands in BioR Toolkit

All BioR commands start withbior so once BioRTools is installed and on your path you can type
bior followed by the tab key (twice) and it will show you all of the current commands in the
toolkit:

$ bior

bior annotate bior create catalog props bior lookup

bior snpeff bior vep bior bed to tjson

bior create config for tab to tjson bior overlap bior tab to tjson

bior compress bior drill bior pretty print

bior tjson to vcf bior create catalog bior index catalog
bior same variant bior vcf to tjson

L http://samtools.sourceforge.net/tabix.shtml

http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2Ftabix.shtml&sa=D&sntz=1&usg=AFQjCNGtCxeaosIW-Jo6mvzdFQmiHA2UNQ

Table 1 has a more complete description of these commands.

Commands in the toolkit operate on tab delimited data with a VCF style header (starting with “#”).
Commands in the toolkit insert additional annotation to the right. Raw annotation is obtained by
comparing JSON objects in columns to JSON objects in catalogs. Table 1.0 shows the format of columns
<in,out> of each BioR function. For example bior_vcf _to_tjson takes as an input VCF columns (and the
header) and outputs VCF + JSON in the last column.

Command Input, Description
Output

Transform Functions

bior_overlap TJSON, Extract annotations from a catalog based on
TJSON genomic location overlap. The overlap is
computed from the Start and End genomics
position of a variant.

bior_same_variant TJSON, Extract annotations from a catalog based on
TJSON variant position, reference and alternate allele
definition.
bior_lookup TJSON, Extract annotations from a catalog based on
TJSON matching values of an identifier.
bior_snpeff TJSON, Use SNPEffect! to annotate variants.
TJSON Chromosome ID, Start and Stop genomics

position, reference and alternate allele of the
variant is required .

bior_vep TJSON, Use VEP? to annotate variants. Chromosome ID,
TJSON Start and Stop genomics position, reference and
alternate allele of the variant is required.

bior_drill TJSON, Extract an element from nested JSON string.
TJSON

bior_compress TJSON, Compress entries from provided set of
TJSON identifiers into a single entry with each value

separated by a delimiter.

Utility Functions

bior_index_catalog identifier, | Index the specified identifier in a catalog.
index Indices a stored in a separate index file.

bior_create_catalog TJSON, Convert a text tabulated file into a catalog.

catalog Chromosome ID, Start and End genomics
position fields have to be explicitly named.

bior_ create_catalog_props catalog, Create property files from the metadata
property | extracted from a catalog. Property files are
needs for proper metadata handling.

TSV,confi | Create a configuration file that describes
bior_create_config_for_tab_to_tjso | g column description. This file is needed when
n uploading a tab delimited file.

Input/Output Functions

bior_vcf _to_tjson VCF, Load a VCF file and convert to TJSON format.
TJSON

bior_tjson_to_vcf TJSON, Convert TJSON to VCF format for file output.
VCF

bior_bed_to_tjson BED, Load a BED file and convert to TJSON format.
TJSON

bior_tab_to_tjson TSV, Load a tab-delimited file and convert to TJSON
TJSON format.

bior_pretty_print TJSON, Convert TJSON in a readable format for screen

STDOUT or file output.

Miscellaneous Functions

bior_annotate VCF, Append to the VCF ‘info’ field a set of commonly
TJSON used annotations.

Table 1: List of commands available in the BioR Toolkit. Detailed description and example is displayed
when executing the command with the -h flag.

Cingolani, P. et al. (2012) A program for annotating and predicting the effects of single nucleotide
polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly
(Austin). 6(2) :p. 80-92.

*McLaren W et al. (2010) Deriving the consequences of genomic variants with the Ensembl API and
SNP Effect Predictor.BMC Bioinformatics 26(16):2069-70

Most every one of these commands supports the -h (help) flag to get information about how to use the
command. To get help on bior_vcf_to_tjson type:

$ bior vcf to tjson -h

NAME

bior vcf to tjson -- converts VCF data into JSON as an additional column

SYNOPSIS
bior vcf to tjson [--log] [--help]

Several of the above functions use ‘Golden Identifiers’ to match records across catalogs. Table 2 shows
the current golden identifiers used in the codebase and what function(s) use them.

‘Golden Identifier’ Functions Definition
landmark bior overlap, Chromosome, or sequence ID
bior same variant | thatthe intervalis located
on
minBP bior overlap, Minimum 1-based position

bior same variant | (e.g. NCBIcoordinates) on
the landmark sequence

maxBP bior overlap, Maximum 1-based position
bior same variant | onthelandmark sequence
_refAllele bior same variant | REF asin VCF standard
_altAlleles bior same variant | ALT asin VCF standard
Pretty Print

Data in the 4™ column of a catalog is stored as JSON. JSON can be deeply nested and hard to read if it is
all smashed into one line. BioR hasacommandbior pretty print thatcan make reading JSON
text easier. Take the earlier example and replace less withbior pretty print:

$ zcat $bior/NCBIGene/GRCh37 pl0/genes.tsv.bgz | bior pretty print
COLUMN NAME COLUMN VALUE

1 UNKNOWN 1 1

2 #UNKNOWN_ 2 10954

3 #UNKNOWN 3 11507

4 #UNKNOWN 4 {
" type": "gene",
" landmark": "1",
" strand": "+",

" minBP": 10954,

" maxBP": 11507,

"gene": "LOC100506145",

"note": "Derived by automated computational analysis using gene prediction method:
GNOMON. Supporting evidence includes similarity to: 1 Protein",

"pseudo": "",

"GeneID": "100506145"

Use -r to specify the row to pretty print. This is very useful when handling sparse data, where the
values for columns you are interested in do not appear on every line. In JSON if there is no value for a
given key, the key is not shown (instead of reporting NULL), so you may need to hunt around in the

dataset a bit to find keys of interest.

Get all Variants in a Gene

Lets do something useful -- say we wanted all genetic variants in VCF format that overlap the BRCA1
gene from dbSNP. This section will illustrate how to use BioR to rapidly build a program that does just
that. BioR is executed at the Linux/UNIX command line, so any command that is available at the
command line can be used with BioR (grep, cut, sed, awk, perl], ...). Lets start with the echo command

to find BRCA1 in the gene catalog.

COLUMN NAME COLUMN VALUE

1 UNKNOWN 1 BRCA1

2 LookupPipe {
" type": "gene",
" landmark": "17",
" strand": "-",

" minBP": 41196312,
" maxBP": 41277500,

using gene prediction method: BestRefseq.",

"GeneID": "672",
"HGNC": "1100",
"HPRD": "00218",

"MIM": "113705"

$ echo "BRCAL" | bior lookup -p gene -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz | bior pretty print

"gene": "BRCAL",
"gene synonym": "BRCAI; BRCC1l; BROVCAl; IRIS; PNCA4; PPP1R53; PSCP; RNFE53",
"note": "breast cancer 1, early onset; Derived by automated computational analysis

The UNIX pipe (“|’) allows you to stream the output of one command to the next. In this example, echo
prints BRCA1 to the screen. bior lookup uses this ID to find the entry in the gene catalog with the
key gene and value ‘BRCA1’. Now we have the genomic coordinates for BRCA1. Lets use these
positions to find all catalog entries in dbSNP that are between 41196312 and 41277500 on

chromosome 17.

$ echo "BRCALl" | bior lookup -p gene -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz
$bior/dbSNP/137/00-A11 GRCh37.tsv.bgz | bior pretty print
COLUMN NAME COLUMN VALUE

| bior overlap -d

1 UNKNOWN 1 BRCA1

2 LookupPipe {

"7type" : "gene",
" landmark": "17",
"7Strand" . ll_ll,

" minBP": 41196312,

" maxBP":

"gene":

"gene synonym":

"note":

41277500,
"BRCAL",
"BRCAI; BRCCI1;

"breast cancer 1, early onset;

using gene prediction method: BestRefseq.",

"GeneID": "672",
"HGNC": "1100",
"HPRD": "00218",
"MIM": "113705"
}
3 OverlapPipe {
"CHROM": "17",
"POS": "41196363",
"ID": "rs8176320",
"REF": "C",
TRALMT g DPW
"QUAL": ".",
"FILTER": ".",
"INFO": {
"RSPOS": 41196363,
"RV": true,
"GMAF": 0.0050,
"dbSNPBuildID": 117,
"SSR": O,
"SAO": O,
"VP": "050000800201040517000100",
"GENEINFO": "BRCAl:672",
"WGT": 1,
"vc": "SNV",
"REF": true,
"U3": true,
"VLD": true,
"HD": true,
"GNO": true,
"KGPhasel": true,
"KGPROD": true,
"OTHERKG": true,
"PH3": true
by
" id": "rs8176320",
" type": "variant",
" landmark": "17",
" refAllele": "C",

BROVCAL;

IRIS; PNCA4; PPP1R53; PSCP; RNF53",

Derived by automated computational analysis

" altAlleles": [
wpn

1,

" minBP": 41196363,

" maxBP": 41196363

This command shows the first match in dbSNP that overlaps the BRCA1 gene according to the NCBI
annotation. The version of dbSNP used to publish the catalog was a VCF file, therefore many fields from
the VCF standard are represented in the JSON. A combination of the UNIX cut command and

bior drill can quickly extracta VCF file. When trying this example, decompose the commands and
use them one at a time to understand what each command is doing.

$ echo "BRCALl" | bior lookup -p gene -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz | bior overlap -d
$bior/dbSNP/137/00-A11 GRCh37.tsv.bgz | bior drill -p CHROM -p POS | cut -f 1,3,4 | head -10

##BIOR=<ID="bior.gene37pl0",Operation="bior lookup",DataType="JSON", ShortUniqueName="gene37pl0", Sou
e="NCBIGene",Description="NCBI's Gene Annotation directly from the gbs
file",Version="37pl0",Build="GRCh37.pl0", Path="/data5/bsi/catalogs/bior/v1/NCBIGene/GRCh37 pl0/gene
tsv.bgz">

##BIOR=<ID="bior.dbSNP137",Operation="bior overlap",DataType="JSON", ShortUniqueName="dbSNP137", Sour
="dbSNP", Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00-A11 GRCh37
sv.bgz">
##BIOR=<ID="bior.dbSNP137.CHROM", Operation="bior drill",Field="CHROM", DataType="String", Number="1",
eldDescription="Chromosome. (VCF

field)", ShortUniqueName="dbSNP137", Source="dbSNP", Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00-A11 GRCh37
sv.bgz">

##BIOR=<ID="bior.dbSNP137.POS",Operation="bior drill",Field="POS",DataType="Integer",Number="1",6Fie
Description="The reference position, with the 1lst base having position 1. (VCF

field)", ShortUniqueName="dbSNP137", Source="dbSNP", Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00-A11 GRCh37

sv.bgz">

#UNKNOWN 1 bior.dbSNP137.CHROM bior.dbSNP137.POS
BRCAL 17 41196363

BRCAL 17 41196368

BRCAL 17 41196372

BRCAL 17 41196403

BRCAL 17 41196408

The result: a simple VCF-like file constructed for all variants in the BRCA1 gene! There are a few small
fixes that will need to be made to make it truly VCF-compliant, and this quickstart glosses over many
features such as the metadata and headers. These and many other issues will be covered in more detail
in the following sections.

3. BioR Catalogs

The BioR Catalog Format

BioR enables users to rapidly transform tabular, hierarchical (e.g. XML) relational, and flat files into
catalogs that can be indexed and searched. Catalogs are read-only snapshots of annotation data. In
production, we snapshot data sets from outside groups and run an automated ‘publishing’ process that
keeps all of the BioR catalogs up to date with reference data sources. Data in catalogs is organized as a
BED-JSON hybrid (a subset of TJSON, or tab-delimited JSON). Columns 1-3 are identical to the required
fields in BED files®? and thus allow many existing tools such as Tabix to work directly on BioR catalogs.
Column 4 is a JSON string encoded object representing the entire contents of the original file.
BioRTools depends on golden identifiers (identifiers that start with an underscore) to enable search.
Golden identifiers are semantically-consistent tightly-controlled fields that are used by the toolkit to
enable filtering and search (e.g. _minBP/_maxBP corresponds to one-based fully-closed genomic
min/max base-pairs).

Catalog Creation Details
As an illustration, we will take a single gene BRCA1 and show it in the original annotation file and in
BioR Catalog structure.

ORIGINAL
The gene BRCA1 is shown below from the original Genbank formatted file:
hs_ref GRCh37.p10_chr17.gbs.gz:

gene complement (41196312..41277500)
/gene="BRCA1"
/gene_ synonym="BRCAI; BRCC1l; BROVCAl; IRIS; PNCA4;
PPP1R53; PSCP; RNF53"
/note="breast cancer 1, early onset; Derived by automated
computational analysis using gene prediction method:
BestRefseqg."
/db_xref="GeneID:672"
/db_xref="HGNC:1100"
/db_xref="HPRD:00218"
/db_xref="MIM:113705"

CATALOG
Below is the corresponding Catalog structure for the final column of gene BRCA1.

"gene": "BRCALl",

"gene synonym": "BRCAI; BRCCl; BROVCAl; IRIS; PNCA4; PPPIR53; PSCP; RNF53",

"note": "breast cancer 1, early onset; Derived by automated computational analysis using gef

prediction method: BestRefseq.",

"GeneID": "672",

"HGNC": "1100",

"HPRD": "00218",

"MIM": "113705",

" type": "gene",

" landmark": "17",

" minBP":

" maxBP":

"_Strand": "_vv,

41196312,
41277500

The catalog format is simple, easy to read, and can be readily processed by third party JSON libraries.
The format is also incredibly flexible, and has allowed us to ingest deeply nested XML structures and

complex relational schemas into BioR. Construction of catalogs can be done with whatever

programming language the user is familiar with. Once the raw data is formatted, bgzip and tabix can

be used to compress and then index the catalog for genomic coordinate-based queries.

Catalogs Available In BioR

The BioR team has created more than 8,000 catalogs relevant to variant annotation from the following

sources.

Data sources currently available in BioR

Datasource URL Version
1000Genomes http://www.1000genomes.org/category/ftp 20110521
BGI http://soap.genomics.org.cn/soapsnp.html hg19
COSMIC http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/ V63
dbSNP http://www.ncbi.nlm.nih.gov/snp/ 137
ESP6500 https://esp.gs.washington.edu/drupal/ build37
HapMap http://hapmap.ncbi.nlm.nih.gov 2010-08_phasell+
111

HGNC http://www.genenames.org 2012_08_12
miRBase http://www.mirbase.org 8.12_12
NCBIGene http://www.ncbi.nlm.nih.gov/gene GRCh37_p10
OMIM http://www.omim.org 2013_02_27
PharmGKB http://www.pharmgkb.org/downloads/ June 2013
DrugBank http://www.drugbank.ca/downloads 3.0
Therapeutic http://bidd.nus.edu.sg/group/cjttd/TTD_Download.asp 4.3.02
Target Database
UCSC http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/ hg19

(note catalogs were created for each UCSC track)

Table S3: list of data sources from which BioR catalogs are derived. A description of the catalog is available at

http://bioinformaticstools.mayo.edu

http://www.google.com/url?q=http%3A%2F%2Fwww.1000genomes.org%2Fcategory%2Fftp&sa=D&sntz=1&usg=AFQjCNHqRQjJ-9e56EMEaIV9lgu9Kv1VtA
http://www.google.com/url?q=http%3A%2F%2Fwww.pharmgkb.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNGTv_LGplJhHXGclTyLQukg7Yvq-w
http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2F&sa=D&sntz=1&usg=AFQjCNGHYEv0RmzwdqNcVhOYUU2KJ4cuDw

Creating a Catalog in Seconds

Many users have data in an arbitrary format (e.g. an Excel file from a paper) or another source of
annotation such as BioMART. BioR allows users to integrate additional sources of information into the
system as catalogs extremely rapidly. Unlike most other tools, BioR does not require a specific
bioinformatics format, all you need to be able to do is convert the files into JSON, and BioR has many
utilities to do that for you!

As an example, lets integrate dbSNFP2.1 into BioR (availible from here:
https://sites.google.com/site /jpopgen/dbNSFP).

First Genes:

$ head -n 1 dbNSFP2.1 gene | tr "("™ " " [tr ™)™ " " |

bior create config for tab to tjson > gene.config

$ vim gene.config (to identify the landmark golden identifier)

$ cat dbNSFP2.1 gene | bior tab to tjson -c gene.config > dbNSFP2.l gene.tjson
$ bior create catalog -c -1 -i dbNSFP2.1 gene.tjson -o dbNSFP2.1 gene

Then Variants:

$ cat dbNSFP2.1 variant* | grep -v ""#" > dbNSFP2.1 variant

$ head -n 1 dbNSFP2.1 variant.chrl|bior create config for tab to tjson >
variant.config

$ vim variant.config (to columns for landmark, minBP, maxBP, refAllele, and
_altAllele)

$ cat dbNSFP2.1 gene | bior tab to tjson -c gene.config > dbNSFP2.1 gene.tjson

$ bior create catalog -c -1 variant.tjson -o dbNSFP2.1 variant

It is really that simple, now dbNSFP is integrated into BioR! To use it, make sure to index as needed using
bior_index_catalog command.

4. Examples Matching Genomic Features

Positional Matches Using Tabix

BioR uses the same technology for compression (BGZIP) and coordinate based indexing as Tabix®. This
means that coordinate-based queries can use the traditional Tabix commands. For example, to show all
genes in a BioR catalog on Chromosome 17 in the range 41196312 - 41277500:

$ which tabix
/usr/bin/tabix

$ which bgzip
/usr/bin/bgzip

2 http://bioinformatics.oxfordjournals.org/content/27/5/718.abstract

https://www.google.com/url?q=https%3A%2F%2Fsites.google.com%2Fsite%2Fjpopgen%2FdbNSFP&sa=D&sntz=1&usg=AFQjCNFyMpScm-314D_ByE1-y7bxSteg2A
http://www.google.com/url?q=http%3A%2F%2Fbioinformatics.oxfordjournals.org%2Fcontent%2F27%2F5%2F718.abstract&sa=D&sntz=1&usg=AFQjCNGq4CMwQ9VQag3K8-xwgtNUAC_5sw

$ tabix S$bior/NCBIGene/GRCh37 pl0/genes.tsv.bgz 17:41196312-41277500

17 41196312 41277500

{" type":"gene"," landmark":"17"," strand":"-"," minBP":41196312," maxBP":41277500, "gene":"BRCA1",6"
ne synonym":"BRCAI; BRCC1l; BROVCAl; IRIS; PNCA4; PPP1R53; PSCP; RNF53","note":"breast cancer 1, ear
onset; Derived by automated computational analysis using gene prediction method:
BestRefseq.","GeneID":"672","HGNC":"1100", "HPRD":"00218", "MIM" :"113705"}
174123127841231833("_type":"gene"," landmark":"17"," strand":"+"," minBP":41231278," maxBP":4123183
"gene":"RPL21P4", "gene synonym":"RPL21 58 1548","note":"ribosomal protein L21 pseudogene 4; Derived
by automated computational analysis using gene prediction method: Curated

Genomic.","pseudo":"","GeneID":"140660", "HGNC":"17959"}

On the Mayo RCF servers, tabix is located at: /projects/bsi/bictools/apps/alignment/tabix/0.2.5/tabix. You may need to type something
like /usr/bin/tabix instead of just tabix if it is not in your path (/usr/bin is usually is your path). To put it in your path edit your $PATH
environment variable. In bash this is done by typing export PATH=$PATH: /usr/bin

Annotating Variants with Genes that Overlap
A common and simple use of BioR is to ask what genes overlap variants of interest. NCBI Generates an
annotation of genes that they store here: ftp.ncbi.nih.gov/genomes/Homo_sapiens

This set of files is one of the authoritative sources for storing both the IDs for genes and the genomic
coordinates. Unfortunately the gbs file is hard to use without the use of libraries. BioR allows you to
do many quick and dirty analyses based on the position of genes. The following example assumes a
VCF-like file with only 8 columns e.g. (note there is an example.vcfis in
$BIOR_LITE_HOME/examples/quickstart2/example.vcf but any properly formatted vcf will work):

$ head example.vcf

##fileformat=VCFv4.0
#CHROM POS ID REF ALT QUAL FILTER INFO
12 1584 8808 1rsll6645811 G
21 2696 5148 1rsl1135638 G
21 2696 5172 1rs010576 T
21 2696 5205 1rsl1057885 T
21 2697 6144 1rsll6331755 A
21 2697 6222 1rs7278168 C
21 2697 6237 1rs7278284 €
21 2697 8790 1rs75377686 T

Q3 3 a Q oy

Now, lets annotate these variants based on the genes they overlap:

$ cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz |
bior drill -p GeneID -p gene | cut -f 9 --complement > example.vcf.genes

$ head example.vcf.genes

##fileformat=VCFv4.0

#CHROMPOSIDREFALTQUALFILTERINFOGeneIDgene

1215848808rs116645811GA...7399USH2A

2126965148rs1135638GA...54148MRPL39

ftp://ftp.ncbi.nih.gov/genomes/Homo_sapiens

2126965172rs010576TC...54148MRPL39
2126965205rs1057885TC...54148MRPL39
2126976144rs116331755AG...54148MRPL39
2126976222rs7278168CT...54148MRPL39
2126976237rs7278284CT...54148MRPL39
2126978790rs75377686TC...54148MRPL39

Feel free to use bior_pretty_print instead of bior_drill to explore the data. Try drilling out other
columns. In-fact, if anything is unclear, break the command apart and run parts of the command to get
a better understanding of what steps are doing (e.g. run cat, thencat | bior vcf to tjson |
bior pretty print,thencat | bior vcf to tjson | bior overlap |

bior pretty print, and so on to understand the transformations done in the pipeline).

This is a simple script based on the above technique to show the genes that contain variants in your
VCF file:

$ head example.vcf
##fileformat=VCFv4.0
#CHROMPOSIDREFALTQUALFILTERINFO
1215848808rs116645811GA. ..
2126965148rs1135638GA. ..
2126965172rs010576TC. ..
2126965205rs1057885TC. ..
2126976144rs116331755AG. ..
2126976222rs7278168CT. ..
2126976237rs7278284CT. ..
2126978790rs75377686TC. . .
$

In many examples, more than one gene may overlap a variant. By default, BioR will ‘fan-out’ the rows
replicating each input row for each result in the result set.

Here is an example of a quick script to look for rsIDs in an entire exome sequencing run (followed by
variant calling formatted as VCF) where we annotate the rsID-gene relationships:

$ cat /data2/bsi/staff analysis/m088341/BioR/exome test/s P68.variants.final.vcf | cut -f 3 | grep
"\." | bior lookup -p ID -d $bior/dbSNP/137/00-All GRCh37.tsv.bgz | grep -v "##" | grep -v ""~ID"|
bior overlap -d $bior/NCBIGene/GRCh37 pl0O/genes.tsv.bgz | bior drill -p gene | cut -f 2 --complemen
| head

#UNKNOWN lgene

rsl46405013LINC0O0115

rs3115849LINCO0115

rs61768173LINCO0115

rs4970461L0C100130417
rs4372192SAMD11
rs6605066SAMD11
rs6672356SAMD11
rs6605067SAMD11
rs6605067NOC2L

This is one way to get the variants that overlap more than one gene:

--complement | grep -v "#UNKNOWN" | grep -v "\." | cut -f 1 | unig -c | grep
2 rs6605067
rs2839
rs262688
rs1043703
rsl7692
rs2294532
rs1043683
rs1043681
rs10523
rs649639

NN NN DN NN

$ cat /data2/bsi/staff analysis/m088341/BioR/exome test/s P68.variants.final.vcf |

cut -f 3 | grep
"\." | bior lookup -p ID -d $BIOR CATALOG/dbSNP/137/00-All GRCh37.tsv.bgz | grep -v "##" | grep -
"~ID"| bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz | bior drill -p gene

cut -f 2

In this case, the variants are sorted, so uniqg can be used directly, but in other cases, consider the unix
sort command (right before uniq). How many variants overlap at least two genes in this exome

sample?

$ $ wec -1 moreThanl.rsID

3778 moreThanl.rsID

Compressing output to enforce 1-1 semantics

Lets say we want to enforce 1-in/1-out semantics (no duplicated variants), BioR has a utility
(bior compress) that can help with that. Here we will start directly with the rare variants. A

simple sed command replaces the counts and gets us back to rsIDs.

$ sed 's/ .* //' < moreThanl.rsID
rs6605067

rs2839
rs262688
rs1043703
rsl7692
rs2294532
rs1043683
rs1043681
rs10523
rs649639

Now we can annotate them in much the same way as before: (or we could modify the above pipeline -
probably want to do that when we want to keep all the input data, but this gives us example variants
that overlap two genes quickly). Run this example without bior compress to see the default
behavior when there is more than one result for a row.

$ sed 's/ .* //' < moreThanl.rsID | bior lookup -p ID -d
$BIOR CATALOG/dbSNP/137/00-All GRCh37.tsv.bgz | bior overlap -d
$bior/NCBIGene/GRCh37 pl0/genes.tsv.bgz | bior drill -p gene | cut -f 1,3 | bior compress 2 | head
#UNKNOWN lgene

rs6605067SAMD11 | NOC2L

rs2839SAMD11 |NOC2L

rs262688PRKCZ|LOC100506504

rs1043703THAP3 |DNAJC11

rsl17692THAP3 |DNAJC11

rs2294532THAP3 | DNAJC11

rs1043683THAP3 |DNAJC11

rs1043681THAP3 |DNAJC11

rs10523THAP3 |DNAJC11

$

5. Expanded Genes (Xrefs)
The HUGO/HGNC table has database cross-references for gene ids and names. The bior lookup
command allows us to ‘walk’ these cross references. Here is an example:

$ bior vcf to tjson < example.vcf | bior overlap -d $bior/NCBIGene/GRCh37 pl0O/genes.tsv.bgz |
bior drill -p GeneID -p gene | cut -f 9 --complement | bior lookup -d
$bior/hgnc/2012 08 12/hgnc GRCh37.tsv.bgz -p Approved Symbol | bior drill -p Approved Symbol -p
Entrez Gene ID -p Ensembl Gene ID -p UniProt ID

##fileformat=VCFv4.0
#CHROMPOSIDREFALTQUALFILTERINFOGeneIDgeneApproved SymbolEntrez Gene IDEnsembl Gene IDUniProt ID
1215848808rs116645811GA...7399USH2AUSH2A7399ENSG00000042781075445
2126965148rs1135638GA...54148MRPL39MRPL3954148ENSG00000154719Q9NYKS
2126965172rs010576TC...54148MRPL39MRPL3954148ENSG00000154719Q9NYK5S
2126965205rs1057885TC. . .54148MRPL39MRPL3954148ENSG00000154719Q9NYKS

2126976144rs116331755AG. ..54148MRPL39MRPL3954148ENSG00000154719Q9NYKS

Lookup requires that the referenced column (last by default change it with the -c flag) is an ID that
has been indexed in the source catalog. ID based indexes are stored in a directory called ‘index’ at the
same level in the filesystem as the catalog. For example, here are all of the indexes for the HGNC
catalog:

Indexing Catalogs

$ 1s S$bior/hgnc/2012 08 12/index/

hgnc GRCh37.Approved Symbol.idx.h2.db hgnc GRCh37.Entrez Gene ID.idx.h2.db
hgnc GRCh37.UniProt ID.idx.h2.db

hgnc GRCh37.Ensembl Gene ID.idx.h2.db hgnc GRCh37.HGNC ID.idx.h2.db

On the RCF, the administrators are very restrictive about space, so additional indexes must be placed in
user/project space. Stand-alone installs can easily place all indexes in the index directory directly
under the directory the catalog is in. BioR allows users to make additional indexes through the
bior_index_catalog command. The help documentation contains:

1) bior index -d S$SBIOR CATALOG/NCBIGene/GRCh37 plO/genes.tsv.bgz -p HGNC
OR

2) bior index -d $BIOR CATALOG/NCBIGene/GRCh37 pl0O/genes.tsv.bgz -p HGNC -1

/data/myindexes/genes.HGNC.idx.h2.db

Option 1, used by the BioR team to create indexes, will create the index file in the index folder in the
same directory as the catalog (as shown in the example for hgnc above). Option 2, most often used by
BioR end users, creates the index in any directory. When using an index created via the second
method, you need to adjust the lookup command appropriately. This will be covered more
comprehensively in the section on creating custom catalogs.

To make an index, use bior_pretty_print to show the contents of the catalog, and then run the index
command.

Looking Up Information about a Gene
Say we wanted to find "Approved_Symbol", "Entrez_Gene_ID", "Ensembl_Gene_ID", "UniProt_ID", and
other common alternative symbols for every gene we have in a list. We can use the BioR lookup

command:

First, we don't know the catalog Structure of HGNC, here is a way to look at the structure of a catalog:

$ zcat $bior/hgnc/2012 08 12/hgnc GRCh37.tsv.bgz | bior pretty print
COLUMN NAME COLUMN VALUE

1 UNKNOWN 1
2 #UNKNOWN 2 0
3 #UNKNOWN 3 0
4 #UNKNOWN 4 {
"HGNC_ ID": "HGNC:5",
"Approved Symbol": "A1BG",
"Approved Name": "alpha-1-B glycoprotein",
"Status": "Approved",
"Locus Type": "gene with protein product",
"Locus Group": "protein-coding gene",
"Previous Symbols": [],
"Previous Names": [],
"Synonyms": [],
"Name Synonyms": [],
"Chromosome": "19qg",
"Date Approved": "1989-06-30",

"Date Modified": "2010-07-08",
"Accession Numbers": [],
"Enzyme IDs": [],
"Entrez Gene ID": "1",

"Ensembl Gene ID": "ENSG00000121410",

"Pubmed IDs": [
"2591067"

1,
"RefSeq IDs": [

"NM 130786"
I
"Record Type": "Standard",
"Primary IDs": [],
"Secondary IDs": [],
"CCDS IDs": [

"CCDS12976.1"
1,
"VEGA IDs": [],
"mapped GDB ID": "GDB:119638",
"mapped Entrez Gene ID": "1",
"mapped OMIM ID": "138670",
"mapped RefSeq": "NM 130786",
"UniProt ID": "P04217",
"mapped Ensembl ID": "ENSG00000121410",
"UCSC_ID": "uc002gsd.4",
"mapped Mouse Genome Database ID": "MGI:2152878",
"mapped Rat Genome Database ID": "RGD:69417"

To join the information in this catalog, to the information that we have collected in the gene table, we
need to tell bior what field in the HGNC table matches the LAST column in our sample data +
annotation. In this case, we will join on approved symbol (note: if you ever get an error with doing a
lookup, you may need an index file - look into the bior_index_catalog command documentation, using
-h for help, or contact the bior team for help - running bior commands).

[m102417@crick4 ~]1$ cat mygenes.txt

MRPL39

PANX2

BRCA1

[m102417@crick4 ~]$ cat mygenes.txt | bior lookup -d $bior/hgnc/2012 08 12/hgnc_GRCh37.tsv.bgz -p
Approved Symbol

#UNKNOWN_ 1LookupPipe
MRPL39{"HGNC_ID":"HGNC:14027","Approved Symbol":"MRPL39", "Approved Name":"mitochondrial ribosomal
protein L39","Status":"Approved","Locus Type":"gene with protein

product", "Locus Group":"protein-coding

gene","Previous Symbols":[],"Previous Names":[],"Synonyms":["RPML5", "MRP-L5", "MGC104174", "PRED66", "
ED22","C2lorf92","L39mt", "MSTPOO3", "MGC3400","FLJ20451"], "Name Synonyms":[],"Chromosome":"21gll.2-q
","Date Approved":"2001-02-28","Date Modified":"2012-09-13","Accession Numbers":["AB051346"], "Enzym
IDs":[],"Entrez Gene ID":"54148","Ensembl Gene ID":"ENSG00000154719","Mouse Genome Database ID":"MG

1351620", "Specialist Database Links":"<!--,-=> <l-=,-=> <l-— —=> <l-—, -=> Jl-— —=> ==, -=> Jl—— —-
Lle=p == Kl==;==> L]==,==2 COSMIC<!--,
> Klo=m == o)== Ko, == Lloe, o= KLlo=,==>

","Specialist Database IDs":["", "', "™, " e mw wnw wn ww ww WMRpL39m, e, v, e e e vl "pupmed IDs"
"11543634"], "RefSeq IDs":["NM 017446"],"Gene Family Tag":"MRPL","Gene family description":"\"Mitoch
drial ribosomal proteins / large

subunits\"", "Record Type":"Standard","Primary IDs":[],"Secondary IDs":[],"CCDS IDs":["CCDS13573.1",
CDS33522.1"],"VEGA IDs":["OTTHUMGO0000078371"], "mapped GDB ID":"GDB:11503068","mapped Entrez Gene I
:"54148", "mapped OMIM ID":"611845", "mapped RefSeqg":"NM 017446","UniProt ID":"QI9NYKS5", "mapped Ensemb
ID":"ENSG00000154719","UCSC ID":"uc002yln.3", "mapped Mouse Genome Database ID":"MGI:1351620"}
PANX2. ..

Now lets extract Entrez_Gene_ID, Ensembl_Gene_ID, and UniProt_ID from the catalog:

$ cat mygenes.txt | bior lookup -d /data5/bsi/catalogs/bior/v1/hgnc/2012 08 12/hgnc_GRCh37.tsv.bgz
Approved Symbol | bior drill -p Entrez Gene ID -p Ensembl Gene ID -p UniProt ID

#UNKNOWN 1Entrez Gene IDEnsembl Gene IDUniProt ID

MRPL3954148ENSG00000154719Q9NYK5

PANX256666ENSG00000073150Q096RD6

BRCA1672ENSG00000012048P38398

$

Example of Walking Cross References

The HGNC table does not contain information about the disease/condition, only the ID in OMIM. Lets
say you would like to also find this information for a select set of genes. In this case, we can use two
catalogs, (1) the HGNC catalog and (2) the genemap directly from OMIM. The figure below shows the
contents of the genemap catalog currently in BioR:

$ zcat S$bior/omim/2013 02 27/genemap GRCh37.tsv.bgz | bior pretty print
COLUMN NAME COLUMN VALUE

1 UNKNOWN 1

2 #UNKNOWN_ 2

3 #UNKNOWN_3

4 #UNKNOWN_ 4 {
"Chromosome.Map Entry Number": 1.1,
"MonthEntered": 9,
"Day": 11,
"Year": 95,
"Cytogenetic location": "lpter-p36.13",
"GeneSymbols": "CCV",
"Gene Status": "P",
"Title": "Cataract, congenital, Volkmann type",
"Title cont": "",
"MIM Number": 115665,
"Method": "Fd",
"Comments": "",
"Disorders": "Cataract, congenital, Volkmann type (2)",
"Disorders cont": " "

}
$

In this catalog, "MIM_Number" represents the OMIM id for the “Disorder” free text field describing the
disease. Given a list of genes, if we want the value of the “Disorder” field in OMIM we can cross-walk
from the gene list through the HGNC catalog to find the MIM number and then again to genemap
catalog to produce a Gene-OMIM_ID-Disorder file:

$ cat mygenes.txt

MRPL39

PANX2

BRCA1

$ cat mygenes.txt | bior lookup -d $bior/hgnc/2012 08 12/hgnc_GRCh37.tsv.bgz -p Approved Symbol |
bior drill -p mapped OMIM ID | bior lookup -d $bior/omim/2013 02 27/genemap GRCh37.tsv.bgz -p
MIM Number | bior drill -p Disorders

#UNKNOWN_1mapped OMIM IDDisorders

MRPL39611845

PANX2608421.
BRCA1113705{Breast-ovarian cancer, familial, 1}, 604370 (3); {Pancreatic cancer,

$

Note: period "' always means the value was not in the dataset. So in this case, some genes are not
associated with disorders in OMIM.

Generating an OMIM Disorder Report for a Set of rsIDs

Want OMIM

cat example.vcf | bior vcf to tjson | bior overlap --d $catalogs/NCBIGene/GRCh37 pl0/ genes.tsv.bgz
bior drill --p GenelID --p gene --p MIM | cut --f9 -- --complement | bior lookup --d
$catalogs/omim/2013 02 27/ genemap GRCh37.tsv.bgz --p MIM Number | bior drill --p Disorders >

example.w omim.

Use lookup to also find any disease/condition information in OMIM. First, the gene catalog just
happens to have the OMIM id ("MIM"), so alter the command to drill that out:

Want OMIM

cat example.vcf | bior vcf to tjson | bior overlap --d $catalogs/NCBIGene/GRCh37 pl0/ genes.tsv.bgz
bior drill --p GenelID --p gene --p MIM | cut --f9 -- --complement | bior lookup --d
$catalogs/omim/2013 02 27/ genemap GRCh37.tsv.bgz --p MIM Number | bior drill --p Disorders >

example.w_omim.

$ cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz |
bior drill -p GeneID -p gene | cut -f 9 --complement | bior lookup -d
$bior/hgnc/2012 08 12/hgnc GRCh37.tsv.bgz -p Approved Symbol

$ cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz |
bior drill -p GeneID -p gene -p MIM | cut -f 9 --complement
##fileformat=VCFv4.0
#CHROMPOSIDREFALTQUALFILTERINFOGeneIDgeneMIM
1215848808rs116645811GA...7399USH2A608400
1215848808rs116645811GT...7399USH2A608400

$ cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz |
bior drill -p GeneID -p gene -p MIM | cut -f 9 --complement | bior lookup -d
$bior/omim/2013 02 27/genemap GRCh37.tsv.bgz -p MIM Number | bior pretty print

COLUMN NAME COLUMN VALUE

1 CHROM 1

2 POS 215848808
3 ID rs116645811
4 REF G

5 ALT A

6 QUAL

7 FILTER

8 INFO

9 GenelD 7399

10 gene USH2A

11 MIM 608400

12 LookupPipe {
"Chromosome.Map Entry Number": 1.1272,
"MonthEntered": 1,

"Day": 27,

"Year": 4,

"Cytogenetic location": "1qg41l",

"GeneSymbols": "USH2A, RP39",

"Gene Status": "C",

"Title": "Usherin",

"Title cont": "",

"MIM Number": 608400,

"Method": "Fd",

"Comments": "",

"Disorders": "Usher syndrome, type 2A, 276901 (3); Retinitis pigmentosa 39,
613809",

"Disorders cont": " ",

"Mouse correlate": "1 (Ush2a)"

}

$

Looks like we want the column "Disorders":

$ cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz |
bior drill -p GeneID -p gene -p MIM | cut -f 9 --complement | bior lookup -d
$bior/omim/2013 02 27/genemap GRCh37.tsv.bgz -p MIM Number | bior drill -p Disorders
##fileformat=VCFv4.0

#CHROMPOSIDREFALTQUALFILTERINFOGeneIDgeneMIMDisorders
1215848808rs116645811GA...7399USH2A608400Usher syndrome, type 2A, 276901 (3); Retinitis pigmentosa

39, 613809

2250616806rs5771206AG...56666PANX2608421.
$

OK, lets go and get some information from some variant catalogs that are not Allele frequencies:

First, dbSNP has all kinds of useful information including

"INFO.dbSNPBuildID":

"INFO.SSR": SSR 1 Integer 247,783 0.49% SNP Suspect Reason Code SNP Suspect
Reason Code, 0 - unspecified, 1 - Paralog, 2 - byEST, 3 - Para_EST, 4 - oldAlign, 5 - other. Countin
column D is non-zero

Sequence Annotation Flags

"INFO.SCS": Integer 12,533 0.02% SNP Clinical Significance SNP Suspect Reason Code, 0 -
unspecified, 1 - Paralog, 2 - byEST, 3 - Para_EST, 4 - oldAlign, 5 - other. Count in column D is non-zero
"INFO.CLN": CLN 0 Flag 31,524 0.06% SNP is Clinical Includes
LSDB,0OMIM,TPA,Diagnostic

"INFO.SAO": SAO 1 Integer 14,908 0.03% SNP Allele Origin
- unspecified, 1 - Germline, 2 - Somatic, 3 - Both. Count in column D is non-zero
"_id": The rs_id, a (near)universal identifier for the Variant.

(to see a compiled list of what is in this, go to the bsi documentation: http://bsiweb.mayo.edu/dbsnp)
This text file is a good guide (downloaded from dbSNP:
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-snp_info_tags.txt)

SNP Allele Origin: 0

$ cat example.vcf | bior vcf to tjson | bior same variant -d $bior/dbSNP/137/00-All GRCh37.tsv.bgz
bior pretty print -r 17

COLUMN NAME

10 SameVariantPipe

COLUMN VALUE

1 CHROM 21
2 POS 26965148
3 ID rsl1135638
4 REF G
5 ALT A
6 QUAL
7 FILTER
8 INFO .
9 VCF2VariantPipe {
"CHROM": "21",

{

"CHROM": "21",
"POS": "26965148",
"ID": "rs1135638",
"REF": "G",
TR TR,

"QUAL": vv.",

"FILTER": ".",

"INFO": {
"RSPOS": 26965148,
"RV": true,

"GMAF": 0.2395,
"dbSNPBuildID": 86,

"SSR": 0,

"SAO": 0,

"VP": "05030000030507051£000100",
"GENEINFO": "MRPL39:54148",
"WGT": 1,

"VC": "SNV",

"S3D": true,
"SLO": true,
"REF": true,
"SYN": true,
"ASP": true,
"VLD": true,
"G5A": true,
"G5": true,
"HD": true,
"GNO": true,
"KGPhasel": true,
"KGPilot1l23": true,
"KGPROD": true,
"OTHERKG": true,
"PH3": true

b

" id": "rsl1135638",

" type": "variant",

" landmark": "21",

" refAllele": "G",

" altAlleles": [
wpn

1,
" minBP": 26965148,
" maxBP": 26965148

To match variants, use same_variant:

Now build a table with: rs_id, dbSNPBuildID, SSR, SCS, CLN, SAO, and CLN, do this:

$ cat example.vcf | bior vcf to tjson | bior same variant -d $bior/dbSNP/137/00-All GRCh37.tsv.bgz
bior drill -p id -p dbSNPBuildID -p INFO.SSR -p INFO.SCS -p INFO.CLN -p INFO.SAO -p INFO.CLN | cu

-f 9 --complement

unfortunately, the variants in this example file, did not have any results, as these annotations are
rather sparse. Finding variants with these properties can be a trick. Here is a trick that I use to cat all
variants from a specific gene:

$ zcat $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz | grep "\"gene\":\"BRCAI\""
174119631241277500{" type":"gene"," landmark":"17"," strand":"-"," minBP":41196312," maxBP":4127750
"gene":"BRCAl", "gene synonym":"BRCAI; BRCC1l; BROVCAl; IRIS; PNCA4; PPPIR53; PSCP;
RNE53", "note":"breast cancer 1, early onset; Derived by automated computational analysis using gene
prediction method: BestRefseq.","GeneID":"672","HGNC":"1100","HPRD":"00218","MIM":"113705"}

$

Then to find a variant in dbSNP with an SAO annotation:

$ zcat $bior/NCBIGene/GRCh37 pl0/genes.tsv.bgz | grep "\"gene\":\"BRCAI\"" | bior overlap -d
$bior/dbSNP/137/00-A11 GRCh37.tsv.bgz | grep SAO | bior pretty print

COLUMN NAME COLUMN VALUE

1 UNKNOWN 1 17

2 #UNKNOWN_ 2 41196312

3 #UNKNOWN 3 41277500

4 #UNKNOWN 4 {

"7type" : "gene",
" landmark": "17",
"_Strand" : "_",

" minBP": 41196312,
" maxBP": 41277500,

"gene": "BRCAL",
"gene synonym": "BRCAI; BRCCl; BROVCAl; IRIS; PNCA4; PPPIR53; PSCP; RNF53",
"note": "breast cancer 1, early onset; Derived by automated computational analysi

using gene prediction method: BestRefseqg.",

"GeneID": "672",
"HGNC": "1100",
"HPRD": "00218",
"MIM": "113705"
}

5 #UNKNOWN 5 {
"CHROM": "17",
"POS": "41196363",
"ID": "rs8176320",
"REF": "C",
TALTPg IHP,
"QUAL": ".",
"FILTER": ".",
"INFO": {

"RSPOS": 41196363,
"RV": true,

by

1,

"GMAF": 0.00
"dbSNPBuildI
USISRESINO)
"SAO": O,
"VP": "05000
"GENEINFO":
"WGT": 1,
"vCc": "SNV",
"REF": true,
"U3": true,
"VLD": true,
"HD": true,
"GNO": true,
"KGPhasel":
"KGPROD": tr
"OTHERKG": t
"PH3": true
" id": "rs8176
type": "vari
" landmark": "
" refAllele":
" altAlleles":
wpn
" minBP": 4119
4119

" maxBP":

50,

p": 117,

0800201040517000100",
"BRCALl:672",

true,
ue,

rue,

320",

ant",

17",

nen,
[

6363,
6363

COSMIC:

#

O 00 J o b W N

$ cat example.vcf

COLUMN NAME

ALT

QUAL

FILTER

INFO
VCF2VariantPipe

| bior vcf to tjson

$bior/cosmic/v63/CosmicCompleteExport GRCh37.tsv.bgz

COLUMN VALUE

21

40190405
rs115908228
G

A

"CHROM" :

1121",

| bior same variant -d

| bior pretty print -r 40

}
10 SameVariantPipe {
"Gene name": "ETS2",
"Accession Number": "ENST00000360214",
"HGNC_ID": "3489",
"Sample name": "107702",
"ID sample": "1520464",
"ID tumour": "1442839",
"Primary site": "breast",
"Site subtype": "NS",
"Primary histology": "carcinoma",
"Histology subtype": "HER-positive carcinoma",
"Genome-wide screen": "n",
"Mutation ID": "94254",
"Mutation CDS": "c.646G\u003eA",
"Mutation AA": "p.G216S",
"Mutation Description": "Substitution - Missense",
"Mutation GRCh37 genome position": "21:40190405-40190405",
"Mutation GRCh37 strand": "+",
"Mutation somatic status": "Confirmed somatic variant",
"Pubmed PMID": "20668451",
"Sample source": "NS",
"Tumour origin": "primary",
" type": "variant",
" landmark": "21",
" refAllele": "G",
" altAlleles": [
wpn
1y
" minBP": 40190405,
" maxBP": 40190405,

"4, v

$ cat example.vcf | bior vcf to tjson | bior same variant -d

$bior/cosmic/v63/CosmicCompleteExport GRCh37.tsv.bgz | bior drill -p Mutation ID -p Mutation CDS -p
Mutation AA -p Mutation GRCh37 strand | cut -f 9 --complement

##fileformat=VCFv4.0

#CHROMPOSIDREFALTQUALFILTERINFOMutation IDMutation CDSMutation AAMutation GRCh37 strand
1215848808rs116645811GA.

1215848808rs116645811GT.......

2140190405rs115908228GA...94254c.646G>Ap.G216S+

2230857373rs2240345AC...330401c.1005T>Gp.D335E~-

2239621797rs35978693GT...39683c.657C>Ap.P219P~-
$

Want UCSC Tracks (blacklisted)cat example.vcf | bior_vcf_to_tjson | bior_overlap --d $catalogs/ucsc/hg19/
wgEncodeDacMapabilityConsensusExcludable_GR

Ch37.tsv.bgz | bior_drill --p score | complement > example.w_ucsc.vcf

UCSC:

The UCSC catalogs related to TREAT are the following:

export ucsc=$bior/ucsc/ ;

export blacklistedFile=$ucsc/hg19/wgEncodeDacMapabilityConsensusExcludable_GRCh37.tsv.bgz ;
export repeatFile=$ucsc/hg19/rmsk_GRCh37.tsv.bgz ;

export regulationFile=$ucsc/hg19/oreganno_GRCh37.tsv.bgz ;

export uniqueFile=$ucsc/hg19/wgEncodeDukeMapabilityRegionsExcludable_GRCh37.tsv.bgz ;
export tssFile=$ucsc/hg19/switchDbTss_GRCh37.tsv.bgz ;

export tfbsFile=$ucsc/hg19/tfbsConsSites_GRCh37.tsv.bgz ;

export enhancerFile=$ucsc/hg19/vistaEnhancers_GRCh37.tsv.bgz ;

export conservationFile=$ucsc/hg19/phastConsElements46wayPrimates_GRCh37.tsv.bgz ;

To annotate with any of these files, do something like this:

$ cat example.vcf | bior vcf to tjson | bior overlap -d $blacklistedFile | bior drill -p score | cu
-f 9 --complement
##fileformat=VCFv4.0
#CHROMPOSIDREFALTQUALFILTERINFOscore
1215848808rs116645811GA. . ..
1215848808rs116645811GT. ...
1215848808rs116645811GG. ...
1215848808rs116645811GC. ...

unfortunately, our example file does not overlap many of these rare features. Another way to think
about this is "what genes of interest overlap some UCSC genomic feature".

$ zcat $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz | bior overlap -d $blacklistedFile | grep -v "{}"
bior drill -c -2 -p gene | cut -f 5

gene

MTND1P23

MTND2P28

TTC34

RNU1-1

RSPO1

HEFM1

AMY2A
NOTCH2NL
NBPF17P
PMF1
PMF1-BGLAP
PCNXL2
RYR2
MTND2P27

This list of genes could then be used in a lookup query later, or you could cut the JSON instead of the
gene name and use that to overlap the data in your VCF file in a filtering process.

A similar technique can be use to pair down the variants based on those variants that you do NOT want
because overlapping some genomic feature would indicate it is unlikely to be significant.

Putting it all Together - Making a Genomic Feature Annotation Program

Below is a simple example of an annotation program using the simple scripts.

$ cat treatGF.bior

bior vcf to tjson < /dev/stdin \

| bior overlap -d $bior/NCBIGene/GRCh37 pl0O/genes.tsv.bgz \

| bior drill -p gene -p GenelID -p MIM \

| bior lookup -d $bior/hgnc/2012 08 12/hgnc_GRCh37.tsv.bgz -p Approved Symbol -c -3 \
| bior drill -p Approved Symbol -p Entrez Gene ID -p Ensembl Gene ID -p UniProt ID \
| bior lookup -d $bior/omim/2013 02 27/genemap GRCh37.tsv.bgz -p MIM Number -c -5 \
| bior drill -p Disorders \

| bior overlap -d $bior/mirbase/releasel9/hsa GRCh37.p5.tsv.bgz -c -9 \

| bior drill -p ID \

| bior overlap -d $bior/ucsc/hgl9/wgEncodeDacMapabilityConsensusExcludable GRCh37.tsv.bgz -c -10 \
| bior drill -p score \

| bior overlap -d S$bior/ucsc/hgl9/phastConsElements46way GRCh37.tsv.bgz -c -11 \

| bior drill -p score \

| bior overlap -d $bior/ucsc/hgl9/oreganno GRCh37.tsv.bgz -c -12 \

| bior drill -p score \

| bior overlap -d $bior/ucsc/hgl9/tfbsConsSites GRCh37.tsv.bgz -c -13 \

| bior drill -p score \

| bior overlap -d $bior/ucsc/hgl9/switchDbTss GRCh37.tsv.bgz -c -14 \

| bior drill -p score \

| bior overlap -d S$bior/ucsc/hgl9/vistaEnhancers GRCh37.tsv.bgz -c -15 \

| bior drill -p score \

| bior overlap -d $bior/ucsc/hgl9/wgEncodeDukeMapabilityRegionsExcludable GRCh37.tsv.bgz -c -16 \

bior drill -p score \

bior overlap -d $bior/ucsc/hgl9/rmsk GRCh37.tsv.bgz -c -17 \

bior drill -p score \

bior overlap -d $bior/ucsc/hgl9/wgEncodeDukeMapabilityRegionsExcludable GRCh37.tsv.bgz -c -18 \
bior drill -p score \

./removeJSON.pl

6. Examples Matching Alleles (bior_same_variant)

Allele Frequencies:
on the RCF:

BGI:

$ cat example.vcf | bior_vcf_to_tjson | bior_same_variant -d $bior/BGI/hg19/LuCAMP_200exomeFinal.maf GRCh37.tsv.bgz |
bior_pretty_print -r 17
COLUMN NAME COLUMN VALUE

1 CHROM 21

2 POS 26965148

31D rs1135638

4 REF G

5 ALT A

6 QUAL

7 FILTER

8 INFO

9 VCF2VariantPipe {
"CHROM": "21",

"POS": "26965148",
"ID": "rs1135638",
"REF": "G",

"ALT": "A",
"QUAL":".",
"FILTER": ".",
"INFO": {

nwo,

" true
b
"id": "rs1135638",
"_type": "variant",

" landmark": "21",

"_refAllele": "G",
"_altAlleles": [
npn
1
"_minBP": 26965148,
"_maxBP": 26965148
}
10 SameVariantPipe {
"chromosome_id": "chr21",
"genomic_position": 25887019
"index_of_major_allele": 0,
"major_allele": "A",
"index_of minor_allele": 2,
"minor_allele": "G",
"number_A": 710,
"number_C": 1,
"number_G": 428,
"number_T": 2,
"estimated_minor_allele_freq": 0.278705,
"estimated_major_allele_freq": 0.721295,
"is_in_dbSNP": 1,
"_landmark": "21",
"_refAllele": "G",
"_altAlleles": [
npn
I
"_minBP": 26965148,
"_maxBP": 26965148,
"_type": "variant",

"_id": @

$ cat example.vcf | bior vcf to tjson | bior same variant -d
$bior/BGI/hgl9/LuCAMP 200exomeFinal.maf GRCh37.tsv.bgz | bior drill -p estimated major allele freq

estimated minor allele freq | cut --complement -f 9

2230823196rs5753130TC...0.5765180.423482
2230856121rs35764129GA...0.9573590.042641
2230857373rs2240345AC...0.6109330.389067
2230857448rs5749104AG...0.5872320.412768
2230857645rs114917409CG.

2230858149rs115111929AC.....

2230860830rs2269961CT...0.8081760.191824

dbSNP:

$ cat example.vcf | bior_vcf_to_tjson | bior_same_variant -d $bior/dbSNP/137/00-All_GRCh37.tsv.bgz | bior_pretty_print -r 17
COLUMN NAME COLUMN VALUE

CHROM 21

POS 26965148

ID rs1135638

REF G

ALT A

QUAL

FILTER

INFO

VCF2VariantPipe {
"CHROM": "21",
"POS": "26965148",
"ID": "rs1135638",
"REF": "G",
"ALT": "A",
"QUAL": ".",
"FILTER™: ".",
"INFO": {

.1 true

b
"_id": "rs1135638",

n

O© 00 N O U1 b W N =

_type": "variant”,
"_landmark": "21",
"_refAllele": "G",
"_altAlleles": [

npn
1
"_minBP": 26965148,
"_maxBP": 26965148
}

10 SameVariantPipe {
"CHROM": "21",
"POS": "26965148",
"ID": "rs1135638",
"REF": "G",

"ALT": "A",
"QUAL": ".",
"FILTER": ".",
"INFO": {
"RSPOS": 26965148,
"RV": true,

"GMAF": 0.2395,
"dbSNPBuildID": 86,
"SSR": 0,
"SA0": 0,
"VP":"05030000030507051f000100",
"GENEINFO": "MRPL39:54148",
"WGT": 1,
"VC": "SNV",
"S3D": true,
"SLO": true,
"REF": true,
"SYN": true,
"ASP": true,
"VLD": true,
"G5A": true,
"G5": true,
"HD": true,
"GNO": true,
"KGPhasel": true,
"KGPilot123": true,
"KGPROD": true,
"OTHERKG": true,
"PH3": true
b
"_id": "rs1135638",
"_type": "variant”,
" landmark": "21",
"_refAllele": "G",
"_altAlleles": [
npn
I
"_minBP": 26965148,
"_maxBP": 26965148

$ cat example.vcf | bior_vcf_to_tjson | bior_same_variant -d $bior/dbSNP/137/00-All_GRCh37.tsv.bgz | bior_pretty_print -r 17
COLUMN NAME COLUMN VALUE

1 CHROM 21

2 POS 26965148
3 ID rs1135638
4 REF G

5 ALT A

6 QUAL

7 FILTER

8 INFO

9 VCF2VariantPipe {
"CHROM": "21",
"POS": "26965148",
"ID": "rs1135638",
"REF": "G",
"ALT": "A",
"QUAL": ".",
"FILTER™: ".",
"INFO": {

nwo,

.1 true
b

" id": "rs1135638",

"_type": "variant",

"_landmark": "21",

"_refAllele": "G",

"_altAlleles": [

T

1

"_minBP": 26965148,

"_maxBP": 26965148
}

10 SameVariantPipe {
"CHROM": "21",
"POS": "26965148",
"ID": "rs1135638",
"REF": "G",

"ALT": "A",
"QUAL": ".",
"FILTER": ".",
"INFO": {

"RSPOS": 26965148,
"RV": true,

"GMAF": 0.2395,
"dbSNPBuildID": 86,
"SSR": 0,

"SAQ": 0,
"VP":"05030000030507051f000100",
"GENEINFO": "MRPL39:54148",
"WGT": 1,

"VC": "SNV",

"S3D": true,

"SLO": true,

"REF": true,

"SYN": true,

"ASP": true,

"VLD": true,

"G5A": true,

"G5": true,

"HD": true,

"GNO": true,
"KGPhasel": true,
"KGPilot123": true,
"KGPROD": true,
"OTHERKG": true,
"PH3": true

b

" id": "rs1135638",
"_type": "variant”,

" landmark": "21",
"_refAllele": "G",
"_altAlleles": [

npn

I

"_minBP": 26965148,
"_maxBP": 26965148

dbSNP:

##fileformat=VCFv4.0

1215848808rs116645811GA.........
1215848808rs116645811GT.........
1215848808rs116645811GG.........
1215848808rs116645811GC.........
1215848808rs116645811CA.........

#CHROMPOSIDREFALTQUALFILTERINFOINFO.dbSNPBuildIDINFO.SSRINFO.SCSINFO.CLNINFO.SAO id

ESP:

$ cat example.vcf
$bior/ESP/build37/ESP6500SI GRCh37.tsv.bgz
COLUMN NAME COLUMN VALUE

| bior vcf to tjson

1 CHROM 21

2 POS 26965148
3 ID rsl1135638
4 REF G

| bior same variant -d

| bior pretty print -r 17

O 0w J o O

10

ALT

QUAL

FILTER

INFO
VCF2VariantPipe

SameVariantPipe

"CHROM": "21",
"POS": "26965148",
"ID": "rs1135638",
"REF": "G",
"ALT": "A",
"QUAL": ".",
"FILTER": ".",
"INFO": {
".": true
by
" id": "rs1135638",
" type": "variant",
" landmark": "21",
" refAllele": "G",
" altAlleles": [
wpn
1,
" minBP": 26965148,

" maxBP": 26965148

"CHROM": "21",
"POS": "26965148",
"ID": "rsl135638",
"REF": "G",

"ALT": "A",
"QUAL": ".",
"FILTER": "PASS",
"INFO": {

"DBSNP": [
"dbSNP_86"

i

"EA AC": [
"7111",
"1489"

1,

"AA AC": [
"3307",
"1099"

i

"TAC": [
"10418",
"2588"

1,

"MAF": [
"17.314",
"24.9433",
"19.8985"

1,

"GTS": [
"AA",
"AG",
nGG

1

"EA GTC": [
"2954",
"1203",
"143"

i
"AA_GTC": [
"1229",
"g49",

"125"

1y

"GTIC": [
"4183",
"2052",
"268"

1y

"DP": 75,

"GL": [
"MRPL39"

1,

"CP": 1.0,

"CG": 3.0,

"ART: wpw,

"CA": [

"EXOME CHIP": [
"no"

1,
"GWAS PUBMED": [

"GM": [
"NM 017446.3",
"NM 080794.3"

i

"EFG": [
"coding-synonymous",
"coding-synonymous"

1,

"AAC": [

"PP": [
"299/339",
"299/354"

1,

"CDP": [

"8oT7",
"goT7"

1,

"GS": [

1,

"PH": [

]

}y

" id": "rs1135638",

" type": "variant",

" landmark": "21",

" refAllele": "G",

" altAlleles": [
wpn

i

" minBP": 26965148,

" maxBP": 26965148

HapMap:

$ cat example.vcf
$bior/hapmap/2010-08 phaseII+III/allele fregs GRCh37.tsv.bgz
COLUMN VALUE

| bior vcf to tjson | bior same variant -d

COLUMN NAME

1 CHROM 21

2 POS 26965148
3 ID rsl1135638
4 REF G

5 ALT A

6 QUAL

| bior pretty print -r 17

5
8

10

FILTER
INFO
VCF2VariantPipe {

}

SameVariantPipe {

"CHROM" : 1121",
"POS": "26965148",
"ID": "rsl1135638",

"REF": "G",
"ALT": "A",
"QUAL": ".",
"FILTER": ".",
"INFO": {

".": true

by
" id": "rs1135638",

" type": "variant",

" landmark": "21",

" refAllele": "G",

" altAlleles": [
wpn

1,
" minBP": 26965148,
" maxBP": 26965148

"rsNumber": "rsl1135638",
"chrom": "chr21",
"pos": 25887019,
"strand": "+",
"build": "ncbi b3e6",
"refallele": "G",
"otherallele": "A",
" type": "variant",
" landmark": "21",

" minBP": 26965148,
" maxBP": 26965148,

" strand": "+",

" refAllele": "G",

" altAlleles": [
wpn

1,
" id": "rsl135638",

"CEU": |
"center": "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human 1M BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:HIMrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:CEPH-60-trios:4",

"QC code": "QC+",

$ cat example.vcf | bior vcf to tjson | bior same variant -d

$bior/hapmap/2010-08 phaseII+III/allele fregs GRCh37.tsv.bgz

#

O 00 J o b W N

10

COLUMN NAME

ALT

QUAL

FILTER

INFO
VCF2VariantPipe

SameVariantPipe

COLUMN VALUE
21

26965148
rsl1135638

G

A

"CHROM": "21",
"POS": "26965148",
TRy Tesl135638M,

"REF": "G",
"ALT": "A",
"QUAL": ".",
"FILTER": ".",
"INFO": {

".": true

by
" id": "rs1135638",

" type": "variant",

" landmark": "21",

" refAllele": "G",

" altAlleles": [
wpn

1,
" minBP": 26965148,
" maxBP": 26965148

}

{
"rsNumber": "rsl1135638",
"chrom": "chr21",
"pos": 25887019,
"strand": "+",
"build": "ncbi b36",
"refallele": "G",
"otherallele": "A",
" type": "variant",
" landmark": "21",
" minBP": 26965148,
" maxBP": 26965148,
" strand": "+",

" refAllele": "G",

| bior pretty print -r 17

" altAlleles": [
IIAII

1,

" id": "rs1135638",

"CEU": {
"center": "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human 1M BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:HIMrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:CEPH-60-trios:4",
"QC_code": "QC+",

"refallele freq": 0.177,
"refallele count": 40,
"otherallele freq": 0.823,
"otherallele count": 186,

"totalcount": 226

n,on

"center": "sanger”,

"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human_1M_BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:H1Mrs1135638:3",
"panelLSID": "urn:1sid:dcc.hapmap.org:Panel:US_African-30-trios:4",
"QC_code": "QC+",
"refallele_freq": 0.277,
"refallele_count": 31,
"otherallele_freq": 0.723,
"otherallele_count": 81,
"totalcount": 112

b

"CHD": {
"center": "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human_1M_BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:H1Mrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:US_Chinese:4",
"QC_code": "QC+",
"refallele_freq": 0.289,
"refallele_count": 63,
"otherallele_freq": 0.711,
"otherallele_count": 155,
"totalcount": 218

b

"GIH": {
"center": "sanger",

"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human_1M_BeadChip:3",

"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:H1Mrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:US_Gujarati:4",
"QC_code": "QC+",
"refallele_freq": 0.49,
"refallele_count": 97,
"otherallele_freq": 0.51,
"otherallele_count": 101,
"totalcount": 198
b
"MEX": {
"center": "sanger”,
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human_1M_BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:H1Mrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:US_Mexican-30-trios:4",
"QC_code": "QC+",
"refallele_freq": 0.237,
"refallele_count": 27,
"otherallele_freq": 0.763,
"otherallele_count": 87,
"totalcount": 114
b
"YRI": {
"center”: "sanger”,
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human_1M_BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:H1Mrs1135638:3",
"panelLSID": "urn:1sid:dcc.hapmap.org:Panel:Yoruba-60-trios:4",
"QC_code": "QC+",
"refallele_freq": 0.269,
"refallele_count": 79,
"otherallele_freq": 0.731,
"otherallele_count": 215,

"totalcount": 294

}
}
$
"CHB": {
"center": "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human 1M BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:HIMrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:Han Chinese:4",

"QC code": "QC+",
"refallele freq": 0.278,
"refallele count": 74,
"otherallele freq": 0.722,

"otherallele count": 192,

"totalcount": 266
by

"TSI": |
"center": "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human 1M BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:HIMrs1135638:3",
"panellLSID": "urn:lsid:dcc.hapmap.org:Panel:Italian:4",

"QC code": "QC+",
"refallele freq": 0.201,
"refallele count": 41,
"otherallele freq": 0.799,
"otherallele count": 163,
"totalcount": 204

bo

"JPT": |
"center": "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human 1M BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:HI1Mrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:Japanese:4",
"QC code": "QC+",

"refallele freg": 0.339,
"refallele count": 76,
"otherallele freq": 0.661,
"otherallele count": 148,
"totalcount": 224

by

"TIWK" : {
"center": "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human 1M BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:HIMrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:Luhya Kenyan:4",

"QC code": "QC+",
"refallele freq": 0.323,
"refallele count": 71,
"otherallele freq": 0.677,
"otherallele count": 149,
"totalcount": 220

bo

"MKK": |
"center": "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol:Human 1M BeadChip:3",
"assayLSID": "urn:LSID:sanger.hapmap.org:Assay:HI1Mrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:Maasai Kenyan-60-trios:4",
"QC code": "QC+",

"refallele freqg": 0.163,
"refallele count": 51,
"otherallele freqg": 0.837,
"otherallele count": 261,
"totalcount": 312

b
"ASW": {

$ cat example.vcf | bior vcf to tjson | bior same variant -d

$bior/hapmap/2010-08 phaseII+III/allele fregs GRCh37.tsv.bgz | bior drill -p CEU.refallele freq -p
CEU.otherallele freq -p YRI.refallele freq -p YRI.otherallele freqg -p JPT.refallele count -p
JPT.otherallele count -p JPT.totalcount -p CHB.refallele count -p CHB.otherallele count -p
CHB.totalcount | cut --complement -f 9

##fileformat=VCFv4.0
#CHROMPOSIDREFALTQUALFILTERINFOCEU.refallele freqCEU.otherallele freqgYRI.refallele freqYRI.otherall
e freqJdPT.refallele countJPT.otherallele countJPT.totalcountCHB.refallele countCHB.otherallele coun
HB.totalcount

1215848808rs116645811GA. ... cvvvevn.

1215848808rs116645811GT....cvvven..

1215848808rs116645811GG. ... vnn...

1215848808rs116645811GC. . ..o vevn..

1215848808rs116645811CA. ..o vvvenn..

1215848808rs116645811CT. ...

1215848808rs116645811CG. . vvvvvun..

1215848808rs116645811CC. . cvvevnnn..

1215848808rs116645811AA. ..o vv v v e v n.

1215848808rs116645811AT. . .ccvvveen.

1215848808rs116645811AG. c . oo v e e ..

1215848808rs116645811AC. ..o v v evn.

1215848808rs116645811TA. ..o vvvenn..

1215848808rs116645811TT.......ccvv...

1215848808rs116645811TG. .. vvvvvunn..

1215848808rs116645811TC. . vvvvevnnn..
2126965148rs1135638GA...0.1770.8230.2690.7317614822474192266

2126965172rs010576TC. v vvvveevn...

2126965205rs1057885TC...0.1540.8460.2380.762305686265884

2126976144rs116331755AG. v o v vv v

2126976222rs7278168CT...1.000.7390.261761086791190

2126976237rs7278284CT. ... cvvvvvn..

2126978790rs75377686TC. .o vvvvnn.n.
2126978950rs3989369AG...0.0350.9650.2650.735222422610264274

1000 Genomes:

$ cat example.vcf | bior vcf to tjson | bior same variant -d
$bior/1000 genomes/20110521/ALL.wgs.phasel release v3.20101123.snps_indels sv.sites GRCh37.tsv.gz
bior pretty print -r 17

COLUMN NAME COLUMN VALUE
1 CHROM 21

2 POS 26965148

3 ID rs1135638

4 REF G

5 ALT A

6 QUAL

7 FILTER

8 INFO

9 VCF2VariantPipe {

"CHROM": "21",
"POS": "26965148",
"ID": "rs1135638",

"REF": "G",
"ALT": "A",
"QUAL": ".",
"FILTER": ".",
"INFO": {

WoWe CEuE

by
" id": "rsl135638",

" type": "variant",

" landmark": "21",

" refAllele": "G",

" altAlleles": [
wpn

I
" minBP": 26965148,
" maxBP": 26965148
}

10 SameVariantPipe {
"CHROM": "21",
"POS": "26965148",
"ID": "rsl1135638",

"REF": "G",

"ALT" : "All,
"QUAL" : "100",
"FILTER": "PASS",
"INFO":

"AVGPOST": 1.0,

"RSQ": 0.9999,

"SNPSOURCE": [
"Lowcov",
"EXOME"

1,

"AN": 2184,
"LDAF": 0.76009,

nyT" . "SNP",
"AQT . "A",
"AC": [

1661

1,
"ERATE": 2.0E-4,
"THETA": 3.0E-4,
"AF": 0.76,
"ASN AF": 0.71,
"AMR AF": 0.8,
"AFR AF": 0.72,
"EUR AF": 0.8

by

" id": "rs1135638",

" type": "variant",

" landmark": "21",

" refAllele": "G",

" altAlleles": [
wpn

1,
" minBP": 26965148,
" maxBP": 26965148

$ cat example.vcf | bior vcf to tjson | bior same variant -d

$bior/1000 genomes/20110521/ALL.wgs.phasel release v3.20101123.snps_indels sv.sites GRCh37.tsv.gz |
bior drill -p INFO.AF -p INFO.EUR AF -p INFO.ASN AF -p INFO.AFR AF -p INFO.AMR AF | cut -f 9
--complement

##fileformat=VCFv4.0

#CHROMPOSIDREFALTQUALFILTERINFOINFO.AFINFO.EUR AFINFO.ASN AFINFO.AFR AFINFO.AMR AF
1215848808rs116645811GA........

1215848808rs116645811TC........
2126965148rs1135638GA...0.760.80.710.720.8
2126965172rs010576TC...0.01..0.040.01
2126965205rs1057885TC...0.760.80.710.720.8
2126976144rs116331755AG...9.0E-4..0.0041.
2126976222rs7278168CT...0.110.00260.140.240.14
2126976237rs7278284CT...0.120.00260.140.270.14
2126978790rs75377686TC...0.01..0.040.01
2126978950rs3989369AG...0.910.960.970.750.94

Putting it All Together Building an AF Pipeline

TREAT]S$ cat treatAF.bior

export bior=$bior/

cat /dev/stdin | bior vcf to tjson \

| bior same variant -d $bior/dbSNP/137/00-All GRCh37.tsv.bgz \

| bior drill -p _id -p INFO.dbSNPBuildID -p INFO.SSR -p INFO.SCS -p INFO.CLN -p INFO.SAO \
| bior same variant -c -7 -d S$bior/cosmic/v63/CosmicCompleteExport GRCh37.tsv.bgz \

| bior drill -p Mutation ID -p Mutation CDS -p Mutation AA -p Mutation GRCh37 strand \

| bior same variant -c -11 -d

$bior/1000 genomes/20110521/ALL.wgs.phasel release v3.20101123.snps indels sv.sites GRCh37.tsv.gz
| bior drill -p INFO.ASN AF -p INFO.AMR AF -p INFO.AFR AF -p INFO.EUR AF \

| bior same variant -c -15 -d $bior/BGI/hgl9/LuCAMP 200exomeFinal.maf GRCh37.tsv.bgz \

| bior drill -p estimated minor allele freqg \

| bior same variant -c -16 -d S$bior/ESP/build37/ESP6500SI_GRCh37.tsv.bgz \

| bior drill -p INFO.MAF[0] -p INFO.MAF[1l] -p INFO.MAF[2] \

| bior same variant -c -19 -d S$bior/hapmap/2010-08 phaseII+III/allele fregs GRCh37.tsv.bgz \
| bior drill -p CEU.refallele freq -p CEU.otherallele freq \

| ./removeJSON.pl

TREAT] $

7. Extracting Data with JSONPaths (bior_drill)

To extract data that is embedded in a JSON document as an array you can use drill.path[1] to get the
first element in the array, drill.path[1].field to get a field in a json array or drill.path[*] to get all
elements in the array.

8. Command Line Tools

Want SNPeff

cat example.vcf | bior snpeff | bior drill -p Effect -p Effect impact -p Functional class -p

Amino_acid change | cut --f 9 -- --complement > example.w genes.vcf

Want SIFT & PolyPhen

cat example.vcf | bior vep | bior drill -p Consequence -p SIFT -p PolyPhen -p SIFT Score -p

PolyPhen Score | cut --f 9 -- --complement > example.w genes.vcf

TREAT]S$ cat treatTOOLS.bior

bior vep < /dev/stdin \
| bior drill -p Allele -p Gene -p Feature -p Feature type -p Consequence -p cDNA position -p
CDS position -p Protein position -p Amino acids -p Codons -p HGNC -p SIFT TERM -p SIFT Score -p
PolyPhen TERM -p PolyPhen Score \
| bior snpeff \
| bior drill -p Effect -p Effect impact -p Functional class -p Codon change -p Amino acid change -p
Gene name -p Gene bioType -p Coding -p Transcript -p Exon
TREAT] S

9. Mixing In Scripts and Languages

To find all overlapping genes that are not the same gene:

zcat $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz | bior overlap -d

$bior/v1/NCBIGene/GRCh37 plO/genes.tsv.bgz | perl -e 'while (<>) {chomp; Qa=split(/\t/,$); if($al3
ne $a[4]) {print $a[3]."\t".S%al4]."\n";} }' | bior drill -c -2 -p gene | bior drill -c -2 -p gene |
less

10. Common Problems

Handling VCF Files with VERY large headers

All BioR commands store the header in memory. This is done because commands like bior_vcf_to_tjson
use the header to understand the structure of the data lines and parse the lines into JSON more
intelligently (e.g. identify numbers instead of strings, identify arrays, ect.). In production, we have
noticed that some headers are extreamly large (multiple megabytes). When a user runs BioR, the
header is expanded into objects in memory for each BioR command. This can lead to BioR slowing to a
crawl when the ram on the machine is exceeded. Internally what happens is that the header is chopped
off and stored in memory, then each row streams through the system as an array of strings. The data
rows are not that large, but the metadata in the header may get copied many times in memory as
transformations are done on the data. The best workaround for this problem is to use grep to cut off all
excess header lines (e.g. lines that are not descriptive) then push the BioR output on to the file.
Recombine the header if needed.

e.g.
zcat example.vcf.gz | head -n 10000 | grep -v "##" > mylongheader.vcf
zcat example.vcf.gz | bior_vcf_to_tjson | bior_mycommands >> mylongheader.vcf

Large Memory Requirements

Sometimes users complain about large memory requrirements from BioR - especially SNPEff. SNPEff,
when run in production requires 4Gb of Ram. BioR will align large insertions and deletions prior to
sending them to SNPEff using the same exact method used in SNPEff. When processing these large
variants, both BioR and SNPEff can crash. The current work-around for dealing with large variants is to

pre-screen them and filter them out to another file prior to annotating with SNPEff. Hopefully the
BioR team will be able to collect better statistics and not align large variants in the future.

BioR exits with some error | don’t understand

Rerun the same exact command with logging enabled (-1) and submit both the input file, and the
results of the log to the BioR team. We will try to help you ASAP.

11. Creating Catalogs

Indexing your Samples
Lets say you want to get variants in your sample that overlap a gene. One way to do this is to stream
the variants e.g:

> cat example.vcf | head

##fileformat=VCEFv4.0

#CHROM POS ID REF ALT QUAL FILTER INFO

21 26960070 rsl1l6645811 G A .

21 26965148 rsl1135638 G A .

21 26965172 rs010576 T C

21 26965205 rsl1057885 T C

21 26976144 rs116331755 A G

21 26976222 rs7278168 C T

21 26976237 rs7278284 C T

21 26978790 rs75377686 T C

>cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 pl0/genes.tsv.bgz | gr
"\"gene\" : \"PANX2\""

22 50616005 rs35195493 C G

{"CHROM" :"22","POS":"50616005","ID":"rs35195493", "REF" :"C", "ALT" :"G", "QUAL" :".","FILTER":".", "INFO"
".":true}," id":"rs35195493"," type":"variant"," landmark":"22"," refAllele":"C"," altAlleles":["G"
" minBP":50616005," maxBP":50616005}

{" type":"gene"," landmark":"22"," strand":"+"," minBP":50609160," maxBP":50618724, "gene":"PANX2" 6"
ne synonym":"hPANX2; PX2","note":"pannexin 2; Derived by automated computational analysis using gen
prediction method: BestRefseq.","GeneID":"56666", "HGNC":"8600", "HPRD":"09760", "MIM":"608421"}

22 50616806 rs5771206 A G

{"CHROM" :"22","POS":"50616806","ID":"rs5771206", "REF" : "A", "ALT" :"G", "QUAL":".", "FILTER":".", "INFO" :
."itrue}," id":"rs5771206"," type":"variant"," landmark":"22"," refAllele":"A"," altAlleles":["G"],
minBP":50616806," maxBP":50616806}

{" type":"gene"," landmark":"22"," strand":"+"," minBP":50609160," maxBP":50618724, "gene":"PANX2" "
ne synonym":"hPANX2; PX2","note":"pannexin 2; Derived by automated computational analysis using gen
prediction method: BestRefseq.","GeneID":"56666", "HGNC":"8600", "HPRD":"09760", "MIM":"608421"}

$

If you just want variants that overlap any gene, you can always do something like:

>zcat $bior/NCBIGene/
GRCh37 pl0O/genes.tsv.bgz | bior overlap -d ./example.tsv.gz |

grep -v "{}" | less

That works fine for a single gene, but what if you are starting with a list of genes? e.g.

>cat mygenes.txt
MRPL39
PANX2
BRCA1

In this case you may want to use an index on your data. To create the index, do something like:

>cat example.vcf | bior vcf to tjson | grep ""#" | cut -f 1,2,9
bior drill -k -p _maxBP > example.tsv

>sort -kl1,1 -k2,2n example.tsv
>bgzip example.tsv
>tabix example.tsv.gz

>tabix -s 1 -b 2 -e 3 example.tsv.gz

Now use lookup to get the gene locations, and overlap to overlap those locations with your data:

>cat mygenes.txt | bior lookup -p gene
-d $bior/NCBIGene/GRCh37 pl0/genes.tsv.bgz |

bior overlap -d ./example.tsv.gz | bior pretty print

You can now use bior_same_variant to annotate variants that overlap your genes.

Creating Custom Catalogs

One of the most powerful things about BioR is that users can publish their own catalogs and integrate
new data into the system. They can also share these catalogs with others making the system
extensible and much more powerful than a system where the catalogs must all be maintained by a
single annotation team.

The Publication Process
Publishing a catalog requires (1) a parser that understands arbitrarily formatted file formats, and (2)

indexing tools. Parsers convert arbitrary data representations into JSON with a set of 'golden
identifiers' the BioR system understands. Example 'golden identifiers’ include _landmark, _minBP, and
maxBP. 'Golden identifiers' are always prefixed with an underscore ('') and must be absolutely
consistent at both in terms of syntax and semantics. For example, _minBP uses the standard 1-based
coordnate system (e.g. NCBI/Blast) not interbase coordinates
(http://gmod.org/wiki/Introduction_to_Chado#Interbase_Coordinates), and _strand is represented as
+',"-",or " and NOT 'complement' as in the gbs files from NCBI. One of the functions of a parser, is to
convert from arbitrary file formats into JSON, the other is to extract the 'golden identifiers' and place
them in the JSON. 'Golden identifiers' are created so that BioR programs (e.g. bior_overlap.sh) can
work on the information regardless of the source file format (e.g. VCF, GFF, GBS, XML, Relational DB,
Tab-Delimited, ...).

As they become availible, parsers, will be exposed to users as command line tools. For example,
bior_vcf_to_variants.sh is a parser that converts vcf to BioR JSON.

In summary, to make a custom catalog, you need:

1. Columns 1-3 bed-like (chr start stop) [1-based]
2. The 4™ column is a series of key-value pairs enclosed by quotes and brackets
3. The 4 column contains “Golden identifiers” [_landmark, _minBP, and _maxBP |

Once this is created, use bgzip & tabix to compress and index it for genomic search. For those samples
that do NOT have a genomic position, use the following values (bior create catalog will do this
for you).

Golden Identifier Default Value
landmark UNKNOWN (a period ‘.’ is also ok)
minBP 0
maxBP 0

Zero is important because it has to be an integer and must be greater than zero. The
JSON does not have to have the golden attribute if you won't search on it.

Parsing and Converting the Data

If a parser for the file format is available (e.g. bior vcf to tjson,bior bed to tjson,ect)
publishing a custom catalog is extremely easy. Using the standard BioR tools, a publication pipeline
can be constructed rapidly. For example:

zcat 00-All.vcf.gz | bior vcf to tjson.sh | cut -f 9 | bior drill.sh -k -p landmark -p minBP -p

_maxBP > dbSNP.tsv

This pipeline streams the original VCF file past the parser (bior_vcf _to_tjson), removes the content of
the original VCF (cut -f 9) - this is ok, as all of this information is duplicated in the JSON format, drill
out the key attributes (bior_drill.sh) so that they can be indexed, and then output to a raw data file
(dbSNP.tsv). The raw output file should look like this:

$ head dbSNP.tsv
1 10144 10145

http://www.google.com/url?q=http%3A%2F%2Fgmod.org%2Fwiki%2FIntroduction_to_Chado%23Interbase_Coordinates&sa=D&sntz=1&usg=AFQjCNGkjeVxm7ra-91CE3ZAoC0vO59tgw

{"CHROM":"l","POS":"10144","ID":"ISl44773400","REF":"TA","ALT":"T","QUAL":".","FILTER":".","INFO":
RSPOS":10145, "dbSNPBuildID":134,"SSR":0,"SAO0":0,"VP":"050000000005000002000200", "WGT":1,"vC":"DIV",
SP":true, "OTHERKG" :true}," id":"rs144773400"," type":"variant"," landmark":"1"," refAllele":"TA"," |

tAlleles":["T"]," minBP":10144," maxBP":10145}

1 10177 10177
{"CHROM":"1","POS":"10177","ID":"rs201752861", "REF" : "A", "ALT":"C", "QUAL":".","FILTER":".", "INFO" : {

SPOS":10177,"dbSNPBuildID":137,"SSR":0,"SAO":0, "VP":"050000000005000002000100", "WGT":1,"VC":"SNV", "

P":true, "OTHERKG" : true}," id":"rs201752861"," type":"variant"," landmark":"1l"," refAllele":"A"," al

lleles":["C"]," minBP":10177," maxBP":10177}

Indexing the Data for Coordinate Based Search

For positional search, BioR supports indexing using Tabix. Tabix/bgzip should be installed in the RCF
environment. First, compress the raw input. Assuming it is sorted:

$ bgzip dbSNP.tsv

Then run the tabix command:

$ tabix -s 1 -b 2 -e 3 dbSNP.tsv.gz &

That's it! you can now use your custom catalog as a database in BioR commands (e.g. bior_overlap.sh -d
/path/to/your/database.tsv.gz).

Hints on Creating Indexes on Custom Catalogs

In addition to coordinate based search, users may also want to search a custom
catalog based on IDs. The process is exactly the same as in indexing a catalog
described earlier in this document, but there are some gotcha’s that users need to be

aware of.

1. The catalog structure will not automatically join data. This can be frustrating as the data
provider may not give the data to you in a desirable form (e.g. you may want to know
everything the data provider knows about a gene, but they may have their data organized by
variant or drug) so you will have to ‘flip’ the data around so that all information about a gene can
be provided to users of your catalog. The BioR team has done this many times, and for Java
programmers, there is a robust library (BioR-Catalog) and examples to help in the publication of
new-complex catalogs.

2. The BioR indexer command currently does not tolerate duplicate keys, so while duplicate keys
can be in the data itself, you can’t index on those keys. Running bior_index_catalog with
logging enabled will help to ensure the keys you would like to index on are valid. To index
multiple ways simultaneously, multiple catalogs need to be created

3. Regardless of what tools are used to construct the JSON column, it must validate as proper JSON.

Use jslint to validate: http://jsonlint.com/
4. JSON should not contain fields that are empty. While adding period “.” As the value for a given
key will work, it wastes space and consumes additional CPU resources so is not recommended.

Use BioR to map SNP on rsID and find overlapping genes.

Say we obtained a simple tab-delimited file that is not in VCF format, but we still want to obtain an
annotation. The following file’s header for this is: rsid without the “rs”, chrom, position, and 0/1
representing presence or absence in our study. There are over 5 million in this file. The goal is to
show how the first 100 or 1000 of these map to various genes

$ zcat bl32 SNPChrPosOnRef 37 1l.bcp.gz | more
3 13 32446841 0
4 13 32447221 0
S 7 91839109 1
6 7 91747130 1
7 7 91779556 1
8 7 92408328 0
9 7 92373453 0
10 7 92383887 0
11 7 11364200 0
12 7 11337163 0
13 7 11387690 0
14 7 11380841 0
15 7 11602931 1
16 7 11602898 1
17 7 11583798 1
18 7 11597474 1
19 7 11597155 1
20 7 11597104 1
21 7 11596933 1
22 7 11596501 1

Try playing around with something like this to get started: (it may not be exactly what you want but
we can work on that)

NCBIGene:

$ cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz |
bior pretty print

COLUMN NAME COLUMN VALUE
1 CHROM 1
POS 215848808

ID rs116645811

http://www.google.com/url?q=http%3A%2F%2Fjsonlint.com%2F&sa=D&sntz=1&usg=AFQjCNGFupkrrSIf40i1lDf2j5uScaM6BA
http://www.google.com/url?q=http%3A%2F%2Fjsonlint.com%2F&sa=D&sntz=1&usg=AFQjCNGFupkrrSIf40i1lDf2j5uScaM6BA

ALT

QUAL

FILTER

INFO
VCF2VariantPipe {

O 0 J o U1

—~—

10 OverlapPipe

computational analysis

REF G

"CHROM" : lllll,
"POS": "215848808",
"ID": "rsll6645811",

"REF": "G",
"ALT": "A",
"QUAL": ".",
"FILTER": ".",
"INFO": {

WoWe CEuE

by
" id": "rsll6645811",

" type": "variant",

" landmark": "1",

" refAllele": "G",

" altAlleles": [
npm

1,
" minBP": 215848808,
" maxBP": 215848808

"_type" . "gene",
" landmark": "1",
"_Strand" . H_H,

" minBP": 215796236,

" maxBP": 216596738,

"gene": "USH2A",

"gene synonym": "dJ1111A8.1; RP39; US2; USH2",
"note": "Usher syndrome 2A (autosomal recessive,
using gene prediction method: BestRefseq.",
"GeneID": "7399",

"HGNC": "12601",

"HPRD": "02042",

"MIM": "608400"

mild) ;

Derived by automated

$ cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz

bior drill -p GeneID -p gene

##fileformat=VCFv4.0

#CHROM

gene

1

21

21

21

21

21

21

21

21

21

21

21

21

21

POS
GenelD
215848808

26965148

26965172

26965205

26976144

26976222

26976237

26978790

26978950

26979752

34022588

34029195

34058146

34059352

ID

rsl16645811
USH2A 7399

rs1135638
MRPL39
rs010576
MRPL39
rs1057885
MRPL39
rs116331755
MRPL39
rs7278168
MRPL39
rs7278284
MRPL39
rs75377686
MRPL39
rs3989369
MRPL39
rs61735760
MRPL39
rsl115683257
SYNJ1 8867
rs114053718
SYNJ1 8867
rs114942253
SYNJ1 8867
rs2254562
SYNJ1 8867

cut -f 9 --complement

REF

ALT

54148

54148

54148

54148

54148

54148

54148

54148

54148

QUAL FILTER INFO
A
A
©
©
G
T
T
©
G
T
A
G
T
@

Now, we want to find "Approved_Symbol", "Entrez_Gene_ID", "Ensembl_Gene_ID", "UniProt_ID", ...

We can use the BioR lookup command:

First, we don't know the catalog Structure of HGNC, here is a way to look at the structure of a catalog:

Case Study: Creating a Report that Maps rsIDs to Genes.

COLUMN NAME COLUMN VALUE

"Accession Numbers": [],
"Enzyme IDs": [],

"Entrez Gene ID": "1",

"Specialist Database Links"

\u003c!--,--\u003e \u003c!--,--\u003e \u003ca
href\u003d\""\u003eMEROPS\u003c/a\u003e\u003c
href\u003d\""\u003eCOSMIC\u003c/a\u003e\ul03c

"Specialist Database IDs":

nn
nn
4
nn
r
nn
4
nn

nn
r

$ zcat $bior/hgnc/2012 08 12/hgnc GRCh37.tsv.bgz | bior pretty print

1 UNKNOWN 1
2 #UNKNOWN 2 0
3 #UNKNOWN 3 0
4 #UNKNOWN 4 {
"HGNC_ ID": "HGNC:5",
"Approved Symbol": "A1BG",
"Approved Name": "alpha-1-B glycoprotein",
"Status": "Approved",
"Locus Type": "gene with protein product",
"Locus Group": "protein-coding gene",
"Previous Symbols": [],
"Previous Names": [],
"Synonyms": [],
"Name Synonyms": [],
"Chromosome": "19qgq",
"Date Approved": "1989-06-30",

"Date Modified": "2010-07-08",

"Ensembl Gene ID": "ENSG00000121410",
: "\u003c!--,--\u003e \u003c!--,--\ul03e
\u003c!--,--\u003e \u003c!--,--\u003e \u003c!--,--\u003e \u003c!--,--\u003e \u003c!--,--\u003e

!——,--\u003e \u003ca
!——,-=\u003e \u003c!--,--\u003e \u003c!--,--\u003e
\u003c!--,--\u003e \u003c!--,--\u003e \u003c!--,--\u003e ",

[

nn
nn
r

nn
4

"I43.950",
"AlBG",

nn
nn
I4
nn
4
nn
4
nn

nn

"Pubmed IDs": [
"2591067"

1/
"RefSeq IDs": [

"NM 130786"
1,
"Record Type": "Standard",
"Primary IDs": [],
"Secondary IDs": [],

"CCDS_IDs": [
"CCDS12976.1"
I
"VEGA IDs": [],
"mapped GDB ID": "GDB:119638",
"mapped Entrez Gene ID": "1",
"mapped OMIM ID": "138670",
"mapped RefSeq": "NM 130786",
"UniProt ID": "P04217",
"mapped Ensembl ID": "ENSG00000121410",
"UCSC_ID": "uc002gsd.4",
"mapped Mouse Genome Database ID": "MGI:2152878",
"mapped Rat Genome Database ID": "RGD:69417"

To join the information in this catalog, to the information that we have collected in the gene table, we
need to tell bior what field in the HGNC table matches the LAST column in our sample data +

annotation. In this case, we will join on approved symbol (note: if you ever get an error with doing a
lookup, you may need an index file - look into the bior_index_catalog command or contact the bior team
for help).

grep ""22.*rs3721" gene snp.dbl32.gene.coding.dat | more
22 7332 UBE2L3 rs372150 29047

22 150223 YDJC rs372150 23030

22 164592 CCDCl1l6 rs372150 15754
22 23753 SDF2L1 rs372150 8782

22 23753 SDF2L1 rs372108 45008
22 23759 PPIL2 rs372150 -12903
22 23759 PPIL2 rs372108 0

22 29799 YPEL1l rs372150 -44455
22 29799 YPEL1l rs372108 -8229

22 83746 L3MBTL2 rs3721 0

22 150356 CHADL rs3721 0

22 5905 RANGAP1 rs3721 -14542

12. Sun Grid Engine

This section gives tips on how to configure a Sun Grid Engine (SGE) job to request the right amount of
resources to successfully execute one or more BioR toolkit commands.

Enable SGE at Mayo

At Mayo, for example, you can log onto an RCF system, such as crick7, then run “mayobiotools” and
choose “69. ogs”, then select the available option, choose “0” to save and exit, then log out and back in
again. You should now be able to run SGE commands such as “qsub”.

Multiple Cores
By default, an SGE job will run on a single core. It’s possible to run a job on multiple cores is specified
via the gsub command’s parallel environment option “~pe”.

-pe parallel environment n[-[m]]|[-]m, ...

To get a list of available parallel environments setup by your SGE admin:

> gconf -spl

fluent pe

make
mpich2 141 hydra
mpich2 mpd

namd2

openmpi

pvm

pvm-tight
threaded

Here is an example of requesting 4 cores for a job:

> gsub -pe threaded 4

The following table gives recommend core values for toolkit commands.

Command Cores Notes

Arbitrary UNIX commands 0 examples: /bin/cat, /bin/grep, /bin/cut
bior_vcf _to_tjson 1

bior_overlap 1

bior_same_variant 1

bior_lookup 1

bior_drill 1

bior_compress 1

bior_vep 2 Warning: Variant Effect Predictor is
implemented using PERL. The virtual
memory for the PERL process grows
linearly with more variants.

bior_snpeff 2 SnpEff loads data into memory for
performance

bior_annotate 29 Annotate performs many commands in
parallel

bior_pretty_print 1

Virtual Memory
Virtual memory is specified via the gsub command’s resource request list option “~1".

-1 resource=value, ...

NOTE: Resources specified with this option are per-core. If your job uses 2 cores, you will need to
divide the resource value by 2.

For virtual memory, the resource name to use is h vmem. Here is an example of requesting 10MB of
virtual memory for a job running on 1 core:

> gsub -1 h vmem=10M

The following table gives recommend virtual memory values for toolkit commands.

Command Virtual Notes
Memory

Arbitrary UNIX commands 100M examples: /bin/cat, /bin/grep, /bin/cut

bior_vcf _to_tjson 600M

bior_overlap 600M

bior_same_variant 600M

bior_lookup 600M

bior_drill 600M

bior_compress 600M

bior_vep 1200M* Warning: Variant Effect Predictor is
implemented using PERL. The virtual
memory for the PERL process grows

linearly with more variants.
bior_snpeff 5100M SnpEff loads data into memory for
performance
bior_annotate 24000M
bior_pretty_print 225M

Resources for a Toolkit Pipeline
This section describes how to request the right resources for a multi-command Toolkit pipeline.
Here is an example script that will be submitted to SGE:

> cat example.sh
#!/bin/sh

dbSNP 137 catalog
DBSNP_CATALOG=/path/to/catalogs/dbSNP/137/00-A11 GRCh37.tsv.bgz

run toolkit pipeline to annotate my variants with dbSNP rsIDs
cat data.vcf | bior vcf to tjson | bior same variant -d $DBSNP_ CATALOG | bior drill -p INFO.ID

The number of cores needed to run this script’s processes in parallel can be calculated by referencing
the table in the Multiple Cores section. The example script will require 3 cores to run optimally.

Command Cores
example.sh 0
/bin/cat 0
bior_vcf _to_tjson 1
bior_same_variant 1
bior_drill 1

The virtual memory needed to run this script can be calculated by referencing the table in the Virtual
Memory section. The example script will require 2000M of virtual memory (100 + 100 + 600 + 600 +
600).

Command Virtual
Memory
example.sh 100M
/bin/cat 100M
bior_vcf _to_tjson 600M
bior_same_variant 600M

bior_drill 600M

The virtual memory setting h vmem is specified on a per-core basis. Since example.sh will be using 3
cores and 2000MB of virtual memory total, h_vem is 2000/3 or roughly 670.

Find an Open Queue

> gconf -sql

Then choose a queue from the list to run your script under. For example, we'll assume there is a queue
in the list called “MY_QUEUE” which we’ll use in the final command.

Here is the final gsulb command with the correct resource requirements:

> gsub -m bae -M myemail@company.com -g l-day -1 h vmem=5000M -pe threaded 3 -V -cwd example.sh

-cwd The -cwd param will specify output to go into the current directory (execute job from current
dir).

-wd You can specify a target directory for output using -wd <pathToDir>.

-V Using -V param will export ALL or your environment variables.

-M Send email

-m Notify me by mail (with -M flag) when certain conditions occur

Status of your Command
Find the status of your command - here it is waiting in the queue, but has not yet started processing:

> gstat
job-ID prior name user state submit/start at queue slots ja-task-ID
119477 0.00000 example.sh m054457 qw 11/22/2013 09:28:11 3

After kicking off the process, it looks like:

$ gstat
job-ID prior name user state submit/start at queue slots
ja-task-ID

119477 0.51062 example.sh m054457 r 11/22/2013 10:47:47 l-day@dnode9l1.mayo.edu 3

Get Command Results

The grid will output several files that begin with the script name you executed, and end with the
queue jobId.

> 1ls -la example.sh.*

—rw-r--r—- 1 m054457 biostat 0 Nov 22 09:38 example.sh.pell9477
—rw-r—--r--— 1 m054457 biostat 0 Nov 22 09:38 example.sh.pell9477
—rW-r--r—- 1 m054457 biostat 0 Nov 22 09:38 example.sh.0119477
—rwWw-r--r—- 1 m054457 biostat 283 Nov 22 09:38 example.sh.ell9477

