The Biological Repository (BioR) and BioRTools
User Guide v2.1.x

By Daniel Quest, Mike Meiners, Patrick Duffy, Raymond Moore, The BioR Team, and the BioR users.

Table of Contents:
1. Installation:

Installing inside Mayo with access to the Research Computing Facility (RCF)
Overview
Steps

Installing the Biological Repository Catalogs

Installing on a Stand-Alone Server or Workstation

Installing BioR Tools from Source

Java Heap Size

2. Qverview
Introduction
Data Modeling
BioR Catalog Shortcut
Finding out what is in a Catalog
Showing the Commands in BioR Toolkit
Pretty Print
Get all Variants in a Gene
3. BioR Catalogs
The BioR Catalog Format
Catalog Creation Details
Catalogs Available In BioR
4. Examples Matching Genomic Features
Positional Matches Using Tabix
Annotating Variants with Genes that Overlap
Compressing output to enforce 1-1 semantics
5. Expanded Genes (Xrefs)
Indexing Catalogs
Looking Up Information about a Gene
Example of Walking Cross References
Generating an OMIM Disorder Report for a Set of rsIDs
Putting it all Together - Making a Genomic Feature Annotation Program
6. Examples Matching Alleles (bior same variant)
Putting it All Together Building an AF Pipeline
7. Extracting Data with J[SONPaths (bior drill)
8. Command Line Tools
9. Mixing In Scripts and Languages
To find all overlapping genes that are not the same gene:
10. Common Problems
Handling VCF Files with VERY large headers
Large Memory Requirements
BioR exits with some error I don’t understand
11. Creating Catalogs

https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.30j0zll
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1fob9te
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3znysh7
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2et92p0
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.tyjcwt
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3dy6vkm
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1t3h5sf
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.4d34og8
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2s8eyo1
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.17dp8vu
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3rdcrjn
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.26in1rg
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.lnxbz9
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.35nkun2
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1ksv4uv
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.44sinio
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2jxsxqh
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.z337ya
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3j2qqm3
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1y810tw
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.4i7ojhp
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2xcytpi
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1ci93xb
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3whwml4
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2bn6wsx
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.qsh70q
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3as4poj
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1pxezwc
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.49x2ik5
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2p2csry
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.147n2zr
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.u9ok6nh7vktc
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.23ckvvd
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.ihv636
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.32hioqz
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.hnp3sy4z9kma
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.41mghml
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2grqrue
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.vx1227
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3fwokq0
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1v1yuxt

Indexing your Samples
Creating Custom Catalogs
The Publication Process
Parsing and Converting the Data
Indexing the Data for Coordinate Based Search
Hints on Creating Indexes on Custom Catalogs
Use BioR to map SNP on rsID and find overlapping genes.

Case Study: Creating a Report that Maps rsIDs to Genes.
12. Sun Grid Engine

Multiple Cores

Virtual Memory

Resources for a Toolkit Pipeline

https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.4f1mdlm
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2u6wntf
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.19c6y18
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3tbugp1
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.28h4qwu
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.nmf14n
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.37m2jsg
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.g6r9c7tcpf2
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.utuh5t4uyo5j
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.eajsc1gaun72
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.gnmvixa4848
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.8uof1lksql8y

The Biological Repository (BioR) and BioRTools
User Guide v 2.1.x

BioR is an annotation engine. Inside Mayo, it's primary use is to annotate human variation, but it is not limited to that - itis a
general purpose genomic data integration tool that enables coordinate based searches and joins based on strings. BioR is like
programming using lego blocks, each block may not be exactly what you want, but you can put the blocks together to create
programs extremely rapidly. The component ‘blocks’ include all existing UNIX commands, stand alone tools (e.g. bedtools), and
the bior_toolkit. This user guide will help get you up to speed in how to use BioR in one document. Please note that BioR is a
complex system, and you should have some experience with UNIX (especially pipes) before using BioR.

1. Installation:

Installing inside Mayo with access to the Research Computing Facility (RCF)
If you have access to the RCF, you are in luck! We have already installed BioRTools for you, all you need to do is put it in your
path. Here are the steps to do that:

Overview

The CLI is available through the mayobiotools utility. No software needs to be downloaded as it's already
pre-installed. Make sure you select version 2.0 or greater.

Steps
1. login to an RCF submission node server (example: "ssh crick6.mayo.edu")
execute "mayobiotools”
scan the list of packages for "java"
type corresponding package number and press enter

select a version that is 1.6 or higher

2
3
4
5
6. scan the list of packages for "bior_scripts"
7. type corresponding package number and press enter

8. select "2.1.0" version

9. quit mayobiotools and save changes

10. logout and log back into the RCF submission node server
11. BioR Command Line Client commands are now available

12. Try this from the command line: "bior_vcf _to_tjson -h" if BioR is working you should see a help message.

13. To expore the bior scripts available on the command line type bior followed by a tab.

Installing the Biological Repository Catalogs

On the RCF, no installation is needed. Catalogs can be found at $BIOR_CATALOG ($bior in this documentation) If you are doing a
stand alone server, download the catalog flat files and place them locally on your server in a similar directory structure. BioR
Tools does not make any assumptions about the location of catalogs relative to each other, but it does assume that tabix indexes
are in the same directory as the compressed catalog and that ID indices are in a folder called index in the same directory as the

catalog.

Installing on a Stand-Alone Server or Workstation

BioR is written in Java, so in principle it will work on any machine, but it depends on some command
line tools (e.g. SNPEFF, VEP) that are not so friendly. The development team has BioR working on both
Macintosh and Linux. To install, first make sure first that Java 1.6+ is installed and on your path (Java
1.7 is preferred). Then download the BioR executable and place it in your path.

Download Links:
You can download BIOR and Catalog datasources from http://bioinformaticstools.mayo.edu/research/bior/.

Toolkit Installation:

First step is to unzip the bior_version zip file you downloaded.
Unzip bior_version.zip -d target directory

If you want to extract files in current directory space.
Unzip bior_verison.zip

Make sure all your files in bior_pipeline project are executable.
chmod -R ugo+x bior_version directory

Now you need to setup the environment variables and add to the path.

export BIOR_LITE_HOME=YOUR BIOR_FOLDER

export PATH=$BIOR_LITE_HOME /bin:$PATH

Now try bior_ and press tab key twice on terminal. Now you will see all bior commands displayed.
Just to verify try bior_drill -h to check toolkit is properly installed.

Now you have successfully installed the toolkit. Next step is to download catalogs.

Catalogs Installation:

Now extract the downloaded catalogs into a directory.
tar -xvf catalogfile.tar -C TARGET DIR

Make sure you extract all catalogs into same target directory.

Now you will need to set the properties.

You will find a file named bior.properties under the folder conf in your bior_version directory.
This is the file where you need to set the tools path and home path of catalogs directory.

Tool commands like bior_vep and bior_snpeff and as well as bior_annotate make use of this properties
file.

Now in the file you need to set fileBase="catalogs directory” value to your catalogs directory.

http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2Fresearch%2Fbior%2F&sa=D&sntz=1&usg=AFQjCNFqZFoAZrPJiMH1sjP12XBtE7hxZg
http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2Fresearch%2Fbior%2F&sa=D&sntz=1&usg=AFQjCNFqZFoAZrPJiMH1sjP12XBtE7hxZg

Example : fileBase=/home/ubuntu/catalogs/
Next step is tools installation.

Tools Installation and Setup
We have integrated two tools SNPEff and Variant Effect Predictor (VEP) into our toolkit.

SNPEff:

Currently we support SNPEff verison 2.0.5d.This was recommended by GATK for worst pick logic.
Installation files and instructions can be found at

http://snpeff.sourceforge.net/download.html

If you using linux or Mac you can just use wget command to download the files below.
http://sourceforge.net/projects/snpeff/files/snpEff v2 0 5d core.zip

Database you need to download is at

http://sourceforge.net/projects/snpeff/files/databases/v2 0 5/snpEff v2 0 5 GRCh37.64.zip
Make sure to change SNPEFF config file snpEff.config to include the path to the database you
downloaded.

Variant Effect Predictor (VEP):

The Version of VEP we support is 2.7.
http://useast.ensembl.org/info/docs/tools/vep/script/vep download.html#versions
You can follow the installation instructions in the above page.

After you have installed SNPEff and VEP now you need to set the paths in bior.properties file located in
conf folder under your bior_pipeline directory.

Example:

##H#SNPEFF ================================sss=========

SnpEff]ar=/../snpeff /2.0.5d /snpEff.jar

SnpEffConfig=/../snpeff/2.0.5d/snpEff.config

HHH#VEP ===
BiorVepPerl=/../perl/5.14.2 /bin/perl
BiorVep=/../vep/variant_effect_predictor/variant_effect_predictor.pl
BiorVepCache=/../vep/variant_effect_predictor/cache/

Installing BioR Tools from Source

Source installation requires that you have both Java 1.7 and Maven installed and on your path. It also
requires that you have access to the Mayo NEXUS servers or you place several libraries in your ~/.m2
directory.

If you have troubles installing BioR or compiling it, please contact the BioR Team
(dIrstitbiorall@mayo.edu) so we can update the documentation and make the process easier.

Java Heap Size
On some machines, the default JVM size is 2GB. This is very large for BioR. By default the BioR toolkit is

http://www.google.com/url?q=http%3A%2F%2Fsnpeff.sourceforge.net%2Fdownload.html&sa=D&sntz=1&usg=AFQjCNFC7HXCHt19HzTleRgk2aPP_CBmZw
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsnpeff%2Ffiles%2FsnpEff_v2_0_5d_core.zip&sa=D&sntz=1&usg=AFQjCNGEeZ_zxDHFj190NCHhN1Ds7EHbMg
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsnpeff%2Ffiles%2Fdatabases%2Fv2_0_5%2FsnpEff_v2_0_5_GRCh37.64.zip&sa=D&sntz=1&usg=AFQjCNF1IKQB5xoy95IBf72VEYqUqs_Png
http://www.google.com/url?q=http%3A%2F%2Fuseast.ensembl.org%2Finfo%2Fdocs%2Ftools%2Fvep%2Fscript%2Fvep_download.html%23versions&sa=D&sntz=1&usg=AFQjCNFJfUKK3tV-yDufFLgb0Jxi8ugnoQ

capped at 128M. To change this setting, change the Maven bior_pipeline/pom.xml (e.g.
<jvmOpts>-Xmx128m</jvmOpts>).

2. Overview

Introduction

BioR uses a Pipe-And-Filter architecture. Data to be annotated by BioR is streamed through a pipeline, a
sequence of one or more pipes. Pipes is based on Flow Based Programming by J.P. Morrison.
DataFlow-Article, Flow-Based-Programing.

ICHROM POS D RIF AT QUAL FILTIR INFO

o2 SEDAZ0SE . A T FASS D100 chrl 4BOIZ09E . A T PASS [CPelD0 present inderabed 0001

pohid IXMGIGE . G T PASS DP=100 chrl 208680 . G T PSS DP=100 prédant oleated 0N

pohird SM1TREE . A G FASS DP=100 chrd SMNITHIT . A 0§ PASS DPel00 abseni iolerabed (=1

heihr S TAS0TII . C G PASE DP-1D0 eheS 0TI . €L G PASE DP=1D0 presdsnt damaging 1009
Fipeline

E

Figure 1: BioRTools works by adding annotation to the right on the original file.

BioR leverages UNIX pipes to flow data from program to program. As BioR programs work on the data,
they place annotation to the right (the red, blue and green colums in Figure 1).

Data Modeling

BioR has adopted a lightweight approach to modeling annotation data. Only core annotation fields are
modeled to enable supported search capabilities (e.g. coordinate search, accession ID search). Anything
not classified as core is modeled into a "schema-free" data structure.

http://www.google.com/url?q=http%3A%2F%2Fwww.dossier-andreas.net%2Fsoftware_architecture%2Fpipe_and_filter.html&sa=D&sntz=1&usg=AFQjCNHdXdQC4O8nK9EZEUCLFvGR2Jau-g
http://www.google.com/url?q=http%3A%2F%2Fwww.drdobbs.com%2Fdatabase%2Fdataflow-programming-handling-huge-data%2F231400148%3Fpgno%3D2&sa=D&sntz=1&usg=AFQjCNGIBZakR7__y1F_Z1RCc0Q9h2ucPw
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2FFlow-Based-Programming-2nd-Application-Development%2Fdp%2F1451542321%2F&sa=D&sntz=1&usg=AFQjCNHERLu7_Fu4DG5wuNR3YlghMSM8Ww

(9]
w
<

V| Tsv
DB .
. Export .
BioR Catalog Shortcut

/ Annotation \

Attributes

BioR commands commonly use long paths to files. One of the first things you will want to do when
using BioR is to make an alias to the location of the BioR catalogs. For example if the BioR catalogs are

located in $bior

Then, on bash, execute the following command at the command line:

$ export bior=/data/path/

You may want to put this command in your .bashrc or .bash_profile so that the $bior environment

variable shows up next time you log in.

Finding out what is in a Catalog

Each data source is 'published’ into a BioR catalog file for use by the BioR scripts. A Catalogis a
collection of files (both data and indexes) that is understood by the BioR Pipes infrastructure. BioR's
reference data consists of the raw files downloaded /updated and made available to BioR users. These
files ARE NOT catalogs. Catalogs are transformed into the BioR standard catalog structure so that pipes
can work on the content. BioR catalogs are bgziped files' that contain 4 columns (_landmark, _minBP,
_maxBP, and JSON). A more comprehensive description of the BioR catalog format is in Chapter 3.

To see what is in a catalog, use the zcat command (gzcat on a mac) followed by the catalog filename,

followed by less:

$ zcat $bior/NCBIGene/GRCh37 pl0O/genes.tsv.bgz | less
1 10954 11507

evidence includes similarity to:

{" type":"gene"," landmark":"1"," strand":"+"," minBP":10954," maxBP":11507,"gene":"LOC100506145","

te":"Derived by automated computational analysis using gene prediction method: GNOMON.
1 Protein","pseudo":"","GeneID":"100506145"}

Supporting

I http://samtools.sourceforge.net/tabix.shtml

http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2Ftabix.shtml&sa=D&sntz=1&usg=AFQjCNGtCxeaosIW-Jo6mvzdFQmiHA2UNQ

Unix less is a good-low-memory command to look at data. Type g <enter>to quit less. Type man
less at the command line to see how to use the less command. You can use up and down arrows to
scroll through the data a line at a time or ‘f’ and ‘b’ to scroll a page at a time.

Showing the Commands in BioR Toolkit
All BioR commands start with bior so once BioRTools is installed and on your path you can type
bior followed by the tab key (twice) and it will show you all of the current commands in the toolKkit:

$ bior

bior annotate bior create catalog props bior lookup

bior snpeff bior vep bior bed to tjson
bior create config for tab to tjson bior overlap bior tab to tjson
bior compress bior drill bior pretty print
bior tjson to vcf bior create catalog bior index catalog
bior same variant bior vcf to tjson

Table 1 has a more complete description of these commands.

Commands in the toolkit operate on tab delimited data with a VCF style header (starting with “#”).
Commands in the toolkit insert additional annotation to the right. Raw annotation is obtained by
comparing JSON objects in columns to JSON objects in catalogs. Table 1.0 shows the format of columns
<in,out> of each BioR function. For example bior_vcf to_tjson takes as an input VCF columns (and the
header) and outputs VCF + JSON in the last column.

Command Input, Description
Output

Transform Functions

bior_overlap TJSON, Extract annotations from a catalog based on
TJSON genomic location overlap. The overlap is
computed from the Start and End genomics
position of a variant.

bior_same_variant TJSON, Extract annotations from a catalog based on
TJSON variant position, reference and alternate allele
definition.
bior_lookup TJSON, Extract annotations from a catalog based on
TJSON matching values of an identifier.
bior_snpeff TJSON, Use SNPEffect! to annotate variants.
TJSON Chromosome ID, Start and Stop genomics

position, reference and alternate allele of the
variant is required .

bior_vep TJSON, Use VEP? to annotate variants. Chromosome ID,
TJSON Start and Stop genomics position, reference and
alternate allele of the variant is required.
bior_drill TJSON, Extract an element from nested JSON string.
TJSON
bior_compress TJSON, Compress entries from provided set of
TJSON identifiers into a single entry with each value
separated by a delimiter.
Utility Functions
bior_index_catalog identifier, | Index the specified identifier in a catalog.
index Indices a stored in a separate index file.
bior_create_catalog TJSON, Convert a text tabulated file into a catalog.
catalog Chromosome ID, Start and End genomics
position fields have to be explicitly named.
bior_ create_catalog_props catalog, Create property files from the metadata
property | extracted from a catalog. Property files are
needs for proper metadata handling.
TSV,config | Create a configuration file that describes
bior_create_config_for_tab_to_tjson column description. This file is needed when
uploading a tab delimited file.
Input/Output Functions
bior_vcf_to_tjson VCF, Load a VCF file and convert to TJSON format.
TJSON
bior_tjson_to_vcf TJSON, Convert TJSON to VCF format for file output.
VCF
bior_bed_to_tjson BED, Load a BED file and convert to TJSON format.
TJSON
bior_tab_to_tjson TSV, Load a tab-delimited file and convert to TJSON
TJSON format.
bior_pretty_print TJSON, Convert TJSON in a readable format for screen
STDOUT or file output.
Miscellaneous Functions
bior_annotate VCF, Append to the VCF ‘info’ field a set of commonly
TJSON used annotations.

Table 1: List of commands available in the BioR Toolkit. Detailed description and example is displayed

when executing the command with the -h flag.

!Cingolani, P. et al. (2012) A program for annotating and predicting the effects of single nucleotide

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly
(Austin). 6(2) :p. 80-92.

*McLaren W et al. (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP
Effect Predictor.BMC Bioinformatics 26(16):2069-70

Most every one of these commands supports the -h (help) flag to get information about how to use the
command. To get help on bior_vcf_to_tjson type:

$ bior vcf to tjson -h

NAME

bior vcf to tjson -- converts VCF data into JSON as an additional column
SYNOPSIS

bior vcf to tjson [--log] [--help]

Several of the above functions use ‘Golden Identifiers’ to match records across catalogs. Table 2 shows
the current golden identifiers used in the codebase and what function(s) use them.

‘Golden Identifier’ Functions Definition
landmark bior overlap, Chromosome, or sequence
bior same variant | ID thatthe intervalislocated
on
minBP bior overlap, Minimum 1-based position

bior same variant | (e.g. NCBIcoordinates) on
the landmark sequence

maxBP bior overlap, Maximum 1-based position
bior same variant [onthelandmark sequence
_refAllele bior same variant | REF asin VCF standard
_altAlleles bior same variant [ALT asin VCF standard
Pretty Print

Data in the 4™ column of a catalog is stored as JSON. JSON can be deeply nested and hard to read if it is
all smashed into one line. BioR hasa commandbior pretty print that can make reading JSON
text easier. Take the earlier example and replace less withbior pretty print:

$ zcat $bior/NCBIGene/GRCh37 pl0/genes.tsv.bgz | bior pretty print
COLUMN NAME COLUMN VALUE

1 UNKNOWN 1 1

2 #UNKNOWN_ 2 10954

3 #UNKNOWN 3 11507

4 #UNKNOWN 4 {
" type": "gene",
" landmark": "1",
" strand": "+",

" minBP": 10954,

" maxBP": 11507,

"gene": "LOC100506145",

"note": "Derived by automated computational analysis using gene prediction method:
GNOMON. Supporting evidence includes similarity to: 1 Protein",

"pseudo": "",

"GeneID": "100506145"

Use -r to specify the row to pretty print. This is very useful when handling sparse data, where the
values for columns you are interested in do not appear on every line. In JSON if there is no value for a
given key, the key is not shown (instead of reporting NULL), so you may need to hunt around in the
dataset a bit to find keys of interest.

Get all Variants in a Gene

Lets do something useful -- say we wanted all genetic variants in VCF format that overlap the BRCA1
gene from dbSNP. This section will illustrate how to use BioR to rapidly build a program that does just
that. BioR is executed at the Linux/UNIX command line, so any command that is available at the
command line can be used with BioR (grep, cut, sed, awk, per], ...). Lets start with the echo command to
find BRCA1 in the gene catalog.

$ echo "BRCAL" | bior lookup -p gene -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz | bior pretty print
COLUMN NAME COLUMN VALUE

1 UNKNOWN 1 BRCA1

2 LookupPipe {
" type": "gene",
" landmark": "17",
" strand": "-",

" minBP": 41196312,
" maxBP": 41277500,

"gene": "BRCAL",
"gene synonym": "BRCAI; BRCC1l; BROVCAl; IRIS; PNCA4; PPP1R53; PSCP; RNFE53",
"note": "breast cancer 1, early onset; Derived by automated computational analysis

using gene prediction method: BestRefseq.",
"GeneID": "672",
"HGNC": "1100",
"HPRD": "00218",

"MIM": "113705"

The UNIX pipe (‘1) allows you to stream the output of one command to the next. In this example, echo
prints BRCA1 to the screen. bior lookup uses this ID to find the entry in the gene catalog with the
key gene and value ‘BRCA1’. Now we have the genomic coordinates for BRCA1. Lets use these
positions to find all catalog entries in dbSNP that are between 41196312 and 41277500 on

chromosome 17.

S "BRCAL"
$bior/dbSNP/137/00-A11 GRCh37.tsv.bgz

echo

COLUMN NAME COLUMN VALUE
1 UNKNOWN 1 BRCA1
2 LookupPipe {
" type": "gene",
" landmark": "17",
" strand": "-",
" minBP": 41196312,
" maxBP": 41277500,
"gene": "BRCAl",
"gene synonym": "BRCAI; BRCC1l; BROVCAL;

"note": "breast cancer 1, early onset;

using gene prediction method: BestRefseqg.",

"GeneID": "672",
"HGNC": "1100",
"HPRD": "00218",
"MIM": "113705"
}
3 OverlapPipe {
"CHROM": "17",
"POS": "41196363",
"ID": "rs8176320",
"REF": "C",
"ALT": "T",
"QUAL": ".",
"FILTER": ".",
"INFO": {
"RSPOS": 41196363,
"RV": true,
"GMAF": 0.0050,
"dbSNPBuildID": 117,
"SSR": O,
"SAO": 0,
"VP": "050000800201040517000100",
"GENEINFO": "BRCAl:672",

| bior lookup -p gene -d Sbior/NCBIGene/GRCh37 pl0/genes.tsv.bgz

| bior overlap -d

| bior pretty print

IRIS; PNCA4; PPP1R53; PSCP; RNF53",

Derived by automated computational analysis

"WGT": 1,

IIVC n : " SNVII,
"REF": true,
"U3": true,

"VLD": true,
"HD": true,
"GNO": true,
"KGPhasel": true,
"KGPROD": true,
"OTHERKG": true,
"PH3": true

by

" id": "rs8176320",

" type": "variant",

" landmark": "17",

" refAllele": "C",

" altAlleles": [
wpn

1,
" minBP": 41196363,
" maxBP": 41196363

This command shows the first match in dbSNP that overlaps the BRCA1 gene according to the NCBI
annotation. The version of dbSNP used to publish the catalog was a VCF file, therefore many fields from
the VCF standard are represented in the JSON. A combination of the UNIX cut command and

bior drill can quickly extracta VCF file. When trying this example, decompose the commands and
use them one at a time to understand what each command is doing.

$ echo "BRCALl" | bior lookup -p gene -d S$bior/NCBIGene/GRCh37 plO/genes.tsv.bgz | bior overlap -d
$bior/dbSNP/137/00-A11 GRCh37.tsv.bgz | bior drill -p CHROM -p POS | cut -f 1,3,4 | head -10

##BIOR=<ID="bior.gene37pl0",Operation="bior lookup",DataType="JSON", ShortUniqueName="gene37pl0", Sou
e="NCBIGene",Description="NCBI's Gene Annotation directly from the gbs
file",Version="37pl0",Build="GRCh37.pl0", Path="/data5/bsi/catalogs/bior/v1/NCBIGene/GRCh37 pl0/gene
tsv.bgz">

##BIOR=<ID="bior.dbSNP137",Operation="bior overlap",DataType="JSON", ShortUniqueName="dbSNP137", Sour
="dbSNP", Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00-A11 GRCh37
sv.bgz">
##BIOR=<ID="bior.dbSNP137.CHROM", Operation="bior drill",Field="CHROM", DataType="String", Number="1",
eldDescription="Chromosome. (VCF

field)", ShortUniqueName="dbSNP137", Source="dbSNP", Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00-A11 GRCh37
sv.bgz">

##BIOR=<ID="bior.dbSNP137.POS",Operation="bior drill",Field="POS",DataType="Integer",Number="1",6Fie

Description="The reference position, with the 1lst base having position 1. (VCF

field)", ShortUniqueName="dbSNP137", Source="dbSNP", Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00-A11 GRCh37
sv.bgz">

#UNKNOWN 1 bior.dbSNP137.CHROM bior.dbSNP137.P0OS

BRCAL 17 41196363

BRCAL 17 41196368

BRCAL 17 41196372

BRCAL 17 41196403

BRCAL 17 41196408

The result: a simple VCF-like file constructed for all variants in the BRCA1 gene! There are a few small
fixes that will need to be made to make it truly VCF-compliant, and this quickstart glosses over many
features such as the metadata and headers. These and many other issues will be covered in more detail
in the following sections.

3. BioR Catalogs

The BioR Catalog Format

BioR enables users to rapidly transform tabular, hierarchical (e.g. XML) relational, and flat files into
catalogs that can be indexed and searched. Catalogs are read-only snapshots of annotation data. In
production, we snapshot data sets from outside groups and run an automated ‘publishing’ process that
keeps all of the BioR catalogs up to date with reference data sources. Data in catalogs is organized as a
BED-JSON hybrid (a subset of TJSON, or tab-delimited JSON). Columns 1-3 are identical to the required
fields in BED files®* and thus allow many existing tools such as Tabix to work directly on BioR catalogs.
Column 4 is a JSON string encoded object representing the entire contents of the original file. BioRTools
depends on golden identifiers (identifiers that start with an underscore) to enable search. Golden
identifiers are semantically-consistent tightly-controlled fields that are used by the toolkit to enable
filtering and search (e.g. _minBP/_maxBP corresponds to one-based fully-closed genomic min/max
base-pairs).

Catalog Creation Details
As an illustration, we will take a single gene BRCA1 and show it in the original annotation file and in
BioR Catalog structure.

ORIGINAL
The gene BRCA1 is shown below from the original Genbank formatted file:
hs_ref GRCh37.p10_chr17.gbs.gz:

gene complement (41196312..41277500)
/gene="BRCA1"
/geneisynonymz"BRCAI; BRCC1; BROVCAl; IRIS; PNCA4;
PPP1R53; PSCP; RNF53"
/note="breast cancer 1, early onset; Derived by automated
computational analysis using gene prediction method:
BestRefseqg."
/db_xref="GeneID:672"

/db_xref="HGNC:1100"
/db_xref="HPRD:00218"
/db_xref="MIM:113705"

CATALOG
Below is the corresponding Catalog structure for the final column of gene BRCA1.

"gene": "BRCAl",

"gene synonym": "BRCAI; BRCC1l; BROVCAl; IRIS; PNCA4; PPP1R53; PSCP; RNF53",

"note": "breast cancer 1, early onset; Derived by automated computational analysis using ge]
prediction method: BestRefseq.",

"GeneID": "672",

"HGNC": "1100",

"HPRD": "00218",

"MIM": "113705",

" type": "gene",

" landmark": "17",

" strand": "-",

" minBP": 41196312,
" maxBP": 41277500

The catalog format is simple, easy to read, and can be readily processed by third party JSON libraries.
The format is also incredibly flexible, and has allowed us to ingest deeply nested XML structures and
complex relational schemas into BioR. Construction of catalogs can be done with whatever
programming language the user is familiar with. Once the raw data is formatted, bgzip and tabix can be
used to compress and then index the catalog for genomic coordinate-based queries.

Catalogs Available In BioR
The BioR team has created more than 8,000 catalogs relevant to variant annotation from the following
sources.

Data sources currently available in BioR

Datasource URL Version

1000Genomes http://www.1000genomes.org/category/ftp 20110521

BGI http://soap.genomics.org.cn/soapsnp.html hg19

COSMIC http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/ V63

dbSNP http://www.ncbi.nlm.nih.gov/snp/ 137

ESP6500 https://esp.gs.washington.edu/drupal/ build37

HapMap http://hapmap.ncbi.nlm.nih.gov 2010-08_phasell+
111

HGNC http://www.genenames.org 2012_08_12

http://www.google.com/url?q=http%3A%2F%2Fwww.1000genomes.org%2Fcategory%2Fftp&sa=D&sntz=1&usg=AFQjCNHqRQjJ-9e56EMEaIV9lgu9Kv1VtA

miRBase http://www.mirbase.org 8.12_12
NCBIGene http://www.ncbi.nlm.nih.gov/gene GRCh37_p10
OMIM http://www.omim.org 2013_02_27
PharmGKB http://www.pharmgkb.org/downloads/ June 2013
DrugBank http://www.drugbank.ca/downloads 3.0
Therapeutic http://bidd.nus.edu.sg/group/cjttd/TTD_Download.asp 4.3.02
Target Database
ucCscC http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/ hg19

(note catalogs were created for each UCSC track)

Table S3: list of data sources from which BioR catalogs are derived. A description of the catalog is available at
http://bioinformaticstools.mayo.edu

4. Examples Matching Genomic Features

Positional Matches Using Tabix

BioR uses the same technology for compression (BGZIP) and coordinate based indexing as Tabix?. This
means that coordinate-based queries can use the traditional Tabix commands. For example, to show all
genes in a BioR catalog on Chromosome 17 in the range 41196312 - 41277500:

$ which tabix
/usr/bin/tabix

$ which bgzip
/usr/bin/bgzip

$ tabix S$bior/NCBIGene/GRCh37 pl0/genes.tsv.bgz 17:41196312-41277500

17 41196312 41277500

{" type":"gene"," landmark":"17"," strand":"-"," minBP":41196312," maxBP":41277500, "gene":"BRCA1", 6"
ne synonym":"BRCAI; BRCC1l; BROVCAl; IRIS; PNCA4; PPP1R53; PSCP; RNF53","note":"breast cancer 1, ear
onset; Derived by automated computational analysis using gene prediction method:
BestRefseq.","GeneID":"672","HGNC":"1100", "HPRD" :"00218", "MIM":"113705"}

174123127841231833{" type":"gene"," landmark":"17"," strand":"+"," minBP":41231278," maxBP":4123183
"gene":"RPL21P4", "gene synonym":"RPL21 58 1548","note":"ribosomal protein L21 pseudogene 4; Derived
by automated computational analysis using gene prediction method: Curated

Genomic.","pseudo":"","GeneID":"140660", "HGNC":"17959"}

On the Mayo RCF servers, tabix is located at: /projects/bsi/bictools/apps/alignment/tabix/0.2.5/tabix. You may need to type something
like /usr/bin/tabix instead of just tabix if it is not in your path (/usr/bin is usually is your path). To put it in your path edit your $PATH
environment variable. In bash this is done by typing export PATH=$PATH: /usr/bin

2 http://bioinformatics.oxfordjournals.org/content/27/5/718.abstract

http://www.google.com/url?q=http%3A%2F%2Fwww.pharmgkb.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNGTv_LGplJhHXGclTyLQukg7Yvq-w
http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2F&sa=D&sntz=1&usg=AFQjCNGHYEv0RmzwdqNcVhOYUU2KJ4cuDw
http://www.google.com/url?q=http%3A%2F%2Fbioinformatics.oxfordjournals.org%2Fcontent%2F27%2F5%2F718.abstract&sa=D&sntz=1&usg=AFQjCNGq4CMwQ9VQag3K8-xwgtNUAC_5sw

Annotating Variants with Genes that Overlap
A common and simple use of BioR is to ask what genes overlap variants of interest. NCBI Generates an
annotation of genes that they store here: ftp.ncbi.nih.gov/genomes/Homo_sapiens

This set of files is one of the authoritative sources for storing both the IDs for genes and the genomic
coordinates. Unfortunately the gbs file is hard to use without the use of libraries. BioR allows you to do
many quick and dirty analyses based on the position of genes. The following example assumes a
VCF-like file with only 8 columns e.g.:

$ head example.vcf

##fileformat=VCFv4.0
#CHROM POS ID REF ALT QUAL FILTER INFO
12 1584 8808 1rslle645811 G
21 2696 5148 1rsl135638 G
21 2696 5172 1rs010576 T
21 2696 5205 1rsl1057885 T
21 2697 6144 1rsll6331755 A
21 2697 6222 1rs7278168 @
21 2697 6237 1rs7278284 C
21 2697 8790 1rs75377686 T

Q32 39 @ Q Q @ P

Now, lets annotate these variants based on the genes they overlap:

$ cat example.vcf | bior vcf to tjson | bior overlap -d $bior/NCBIGene/GRCh37 plO/genes.tsv.bgz |
bior drill -p GeneID -p gene | cut -f 9 --complement > example.vcf.genes
$ head example.vcf.genes

##fileformat=VCFv4.0

#CHROMPOSIDREFALTQUALFILTERINFOGeneIDgene
1215848808rs116645811GA...7399USH2A

2126965148rs1135638GA...54148MRPL39

2126965172rs010576TC...54148MRPL39

2126965205rs1057885TC...54148MRPL39
2126976144rs116331755AG. . .54148MRPL39
2126976222rs7278168CT...54148MRPL39

2126976237rs7278284CT...54148MRPL39

2126978790rs75377686TC...54148MRPL39

ftp://ftp.ncbi.nih.gov/genomes/Homo_sapiens

5 cat example.vef | bior_wef te tjison | bior overlap =d
Sbior/NCBIGens/GRCh37 pl0/fgenes.tsv.bgz | bior drill -p GeneID -p gene | cut -f 9 --
complement > example.vcf.genes

5 head example.vcf.genes

##fileformat=VCFw4.0
#CHROMPOSIDREFALTQUALFILTERINFOGene IDgene
1215848808rall1a645811GA. . . 7399USH2A
2126965148rs1135638GA . . . 541 4BMRPL3S
2126965172r5010576TC. . . 54148MRPLAY
2126965205rs1057485TC. . . 541 4BMRPL3S
2126976144r5116331755AG. .. 54148MRPL3Y
212697T6222rs727816BCT. . . 541 4BMRFL3S

212687623 7rs7278284CT. . . 541 4BMRPL3S

212889787808 753776B6TC. . .5414BMRPLSY

3

Feel free to use bior_pretty_print instead of bior_drill to explore the data. Try drilling out other
columns. In-fact, if anything is unclear, break the command apart and run parts of the command to get a
better understanding of what steps are doing (e.g. run cat, thencat | bior vcf to tjson |
bior pretty print,thencat | bior vcf to tjson | bior overlap |

bior pretty print, and so on to understand the transformations done in the pipeline).

This is a simple script based on the above technique to show the genes that contain variants in your VCF
file:

3] % head example.wct
fffileformat=V_CFv4.0
#CHROMFOSIDREFALTQUALFILTERINFC
121584880B8rs116645B11GA. ..
2126965148rs113563BGA. ..
£126965172rs010576TC. ..
2126965205rs1057885TC. ..
2126976144rs5116331755A5. ..
2126376222r37278168CT. ..
212697623Tr37278284CT. ..
2126978790r375377686TC, ..
=

In many examples, more than one gene may overlap a variant. By default, BioR will ‘fan-out’ the rows

replicating each input row for each result in the result set.

Here is an example of a quick script to look for rsIDs in an entire exome sequencing run (followed by
variant calling formatted as VCF) where we annotate the rsID-gene relationships:

% cat SdataZ/bsifstaff analysis/mi8B341/BioR /exome test/s PoB.variants.final.
wof cut =f 3 | grep -wv "\." bior leocokup =-p ID -d Sbior/dbSHNE/137/700-
ALll GRCh3?.tsv.bgz | grep —-v "#4° | grep -v “"ID"| bior overlap —d
Sbior/HCEIGene/GRCh3IT pll/genes.tav.bgz bior drill -p gene cut -f 2 --
complement | head

#FUNENCHWE _lgens

rslded050L3LINCOOLLS

r=3115843LIHNCO011S

ra6l1 7681 TILINCOOL1LS

rs4270461LOC1O0130417

ra437219258M011

rs66050665AMD11

res6A6T7235658MD11

rs66050675AMD11

e RS0 ETHOSEE

This is one way to get the variants that overlap more than one gene:

S cat Sfdatafbaifstaff analysia/mdid34l/BloR/exome testfas PEO.varianta.fimal.
wi F cut —-f 3 grep —w "y 0" hior lookup -p ID -d
SBIOR_CATALOG/dESHP/I3T/AO0-AL1_GRCRIT . tsv.bgz grap —v =Fg" grep —w =-ID%

bior ocwerlap -d Sblcr/HCEIGens/,/GRCh3i7 pllfgenes.tav.bgz bicr drill -p gene
cut =f 2 —=coamplement | grep v "§OHERDWH" | grep =w "%, " | cut =£ 1 AL
-z | grap -w "1 ="
2 raaalEdaT
cEZB3D
5262648
ralf43703
cslTED2
Es2294532
rall43eds
rsl0d3&81
rsl0523

raad a3 e

[T 5 L N 5 T % T o I

In this case, the variants are sorted, so unig can be used directly, but in other cases, consider the unix
sort command (right before uniqg). How many variants overlap at least two genes in this exome
sample?

% 5 we -1 moreThanl.rsID

3778 moreThanl.rsID

Compressing output to enforce 1-1 semantics

Lets say we want to enforce 1-in/1-out semantics (no duplicated variants), BioR has a utility

(bior compress) that can help with that. Here we will start directly with the rare variants. A simple
sed command replaces the counts and gets us back to rsIDs.

% med 'sf L0 < moreThanl.rsID
rsfels0a’y

rE2839

rs2B26RE

r51043703

ral7692

rs2d94532

rsldd3og3

raldd4368]

rald523

rebd 9639

Now we can annotate them in much the same way as before: (or we could modify the above pipeline -
probably want to do that when we want to keep all the input data, but this gives us example variants
that overlap two genes quickly). Run this example withoutbior compress to see the default
behavior when there is more than one result for a row.

5 med ‘'a/f ¥ JfY < moreThanl.rsID | bkior lockup -p ID -d
SBEICE_CATALOG/dbSNF/S137/00-A11 GRChiV.tav.bgz | bicr owerlap -4
Sl:-ic:-r.-'tJ:EIIGEne!GREhB'.'_plfJf'geneg.T.su.bga | bior drill =p gens | cut =€ 1,3 |
hlﬁ:_camy:ess 2 | h=ad

FUMEHOWH_ 1 gene

rsESDI0aTSRHDLL | HOCZL

rE283PSAMDLL | 2L

re2 G268 8FRKCE | LOC10D506504

reld43703THAFY |DMAIC1]

rel?6%2THAFI | DHAJTCL11

re2294532THAPI | DMAIC11

reld43683THAPS | DMATC11

rel043681THARS | DMAIC11

rslISL3ITHAFI [ONAICIL

=l

5. Expanded Genes (Xrefs)

The HUGO/HGNC table has database cross-references for gene ids and names. The bior lookup
command allows us to ‘walk’ these cross references. Here is an example:

§ bior vef to_tison < example.wvef | bior owverlap -d

Sbior/NCEIGens/GRCh37 pll/fgenes.tsv.bgz | bior_drill -p GenelID -p gene | cut -f
9 ——complement | bior lookup -d $bicr/hgnc/2012 08 12/hgne GRCh37.tsw.bgz -p
Approved Symbol | bior drill -p Approved Symbol -p Entrez Gene ID -p

Ensembl Gene ID -p UniProt ID

#ffileformat=vCFw4d.,0
#CHROMPOSIDREFALTQUALFILTERINFOGeneIDgenedpproved SymbolEntrez Gene IDEnsembl Ge
ne IDUniProt_ID
1215848808r51166450811GA. . . T399USH2ZAUSHZATIDSENSGLO0O0042T781075445
2126965148rs1135638GA . . . 541 4BMRPLASMRPLIA54148ENEGO00001 54 T1905HYES

21269651 72rs010576TC. . .54148MRPLASMRPLAS5414BENSGO0A001547 1 909HYKS
2126965205r51057885TC. . . 5414BMRPL3OMRPLIS54 148ENSG000001 54 T19Q9NYES
2126976144rs116331755AG. . . 54148MRPLIYMRPLISS4148ENSGODO00154 71 3Q9NYES

Lookup requires that the referenced column (last by default change it with the -c flag) is an ID that has
been indexed in the source catalog. ID based indexes are stored in a directory called ‘index’ at the same
level in the filesystem as the catalog. For example, here are all of the indexes for the HGNC catalog:

Indexing Catalogs

% 15 Shior/hgnc/Z012 08 1Z/index/

hgnc GRCh37.Approved Symbol.idx.h2.db hgne GRCh37.Entrez Gene ID.idx.h2.db
hgne_GRCh37.UniProt ID.idx.hd.db

hgne GRCh37.Ensemb]l Gene ID.idx.h2.db hgne GRCh37.HGNC ID.idx.h2.db

On the RCF, the administrators are very restrictive about space, so additional indexes must be placed in
user/project space. Stand-alone installs can easily place all indexes in the index directory directly under
the directory the catalog is in. BioR allows users to make additional indexes through the
bior_index_catalog command. The help documentation contains:

1) bicr index -d SBICR CATALOG/NCEIGene/GRCh37 plO/genes.tsv.bgz -p HGHC
OR

2) bior index -d $BICR CATALOG/MCBIGens,/GRCh37 pll/fgenes.tsv.bgz -p HGHNC -1
Jdata/myindexes/genes .HGNC.idx.h2.dk

Option 1, used by the BioR team to create indexes, will create the index file in the index folder in the
same directory as the catalog (as shown in the example for hgnc above). Option 2, most often used by
BioR end users, creates the index in any directory. When using an index created via the second method,
you need to adjust the lookup command appropriately. This will be covered more comprehensively in
the section on creating custom catalogs.

To make an index, use bior_pretty_print to show the contents of the catalog, and then run the index
command.
Looking Up Information about a Gene

Say we wanted to find "Approved_Symbol", "Entrez_Gene_ID", "Ensembl_Gene_ID", "UniProt_ID", and
other common alternative symbols for every gene we have in a list. We can use the BioR lookup
command:

First, we don't know the catalog Structure of HGNC, here is a way to look at the structure of a catalog:

2 FUNENOWHN

3 FUMEMOWN 3 1]

4 l-L"NKh'UﬁH_ﬂ
"HGHEC ID™: "HGHC:S™.
"Approved Symbol": "AIBGT,
"Approved Name®: “"alpha=-1-B glycoprotein®,
"Status": "Approwved",
"Loous Type®™: "gene with protein produce™,
"Locua Group": "protein-coding gene',
"Previous_Symbols®: [,
"Previous_ Names": [],
"Eynonyma": [],
"Hama Synonyms™: [].
"Chromosoma™: =109g™,
"Date Approwed®™: "1898%-0&-30",
"Date Modified®™: =2010-07-08",
"Accession Humbers™: [,
"Enzyme_IDs": [],
"Entrez Gens_ ID": ™17,
"Engembl Gene IDT: TENSGOOOO0121420,

"Pubmed IDs"™: [

"wELS106T"
1.
"RefSeq IDs":

YHM_ 1307EsY
1.
"Record_Type": "Standard®,
"Primary IDs": [],
"Secondary IDs": [],
"CCDS_IDs": [

"oCoDS129768.1°
1.
"WEGA _IDs": [].
"mapped GODE_ICM: "GDBE:119638Y,
"mapped Entrez Gene ID": "1%,
"mapped OMIM ID™: ™138B670",
"mapped RefSeq®: "HM_130726°%,
"UniFrot ID®: *"p04217",
"mapeed Ensemikzl ID™:; "EWMSGOOOO01214107,
"OoSC IDT: "ucl0Zgad.4v,

W e 3 Blme e . P il FelB . IFRESST . M1 E S ST

To join the information in this catalog, to the information that we have collected in the gene table, we
need to tell bior what field in the HGNC table matches the LAST column in our sample data + annotation.
In this case, we will join on approved symbol (note: if you ever get an error with doing a lookup, you
may need an index file - look into the bior_index_catalog command documentation, using -h for help, or
contact the bior team for help - running bior commands).

[mi02417@8crickd ~]% cat mygenes.txt

MRFL3I9

PRMNEZ

BRCAL

[MlI0241TEcrickd =~]15 cat mygenes.txt | biar_ lookup -d
Sbicr/hgnc/2012 0B 1Z2/hgnc GRCh3T.tav.bgz =p Approved Symbol

FUNEHOAEN 1LockupEipe

MREL3IS ["HGHC_ID™:"HGHNC:140277, "Approved Symbol™:"HRPLIS" , "Appraved Hame™:=
mitochondrial ribosomal protein L2%%,"Status":"Approwved","Locus Type:“gene
with protein product","Locus_Group":"protein-coding gene", "Previous_Symbols™:
[1s "Preuicu&_ﬂan‘es" t[]1."Synonyms": ["RPHMLS™, "MEP-L5", "MGC104174™, "PREDEE™, ™
FREDZZ2", "C2lorf3z2", "L3SmL™, "HSTPOO3IY "HGC3400", "EFLJ20451"], "Hama_Synonyms ™ :
[1s"Chramaoseme™:"21g9ll.2-g2l"™, "Iate_Appraved":;"2000L-D2-28", "Date_Modified™:"™
2012-09=-13", "Accesslion Humbers™: ["ABOS1346"], "Enzyme ID=":[],"

Entraz_Gene_ ID":"54148", "Ensembl Gene ID™:"EMNSGE0000015471%5%" .

Mouse Genome Database I0™:"MGI 13516207, "Specialist Database Links":"<l--,-->
A e - AL e L R E L T R L A B A L - S S R L - E T
——> <a href=\"http:/ www.sanger.ac.uk/parl/genetics,/CGP/cosmic?
action=genssamp; Ln=MRPLIGY ">C008MICS faral—=, =2 Glee, o wlee, con wlee oom ol
==y==® <l=—, -=x " ¥Specialist_ Database_ IDs'"p["", =S, 88 00 am S8 mh wn mm, =8,
MRELIQ™, " mmE] "Pubmed_IDs®: ["11543634%], "RefSeg_IDs":

["HM O01T44E6"], "Gene Family Tag'":"MRPL®, "Gene family descripticn™:"."
Mitochondrial ribosomal proteins / large subunitsi®", "Record Typa":"
Standard", "Primary IDs": [], "Secondary IDs":[],"0CCDS_Ths": ["OCDS1L3ISTE. 17, "
CCDS33522.1%], "‘-".EGE';_I Da¥: [*oTTHUMSHO0000TE3T1Y], "'ITEP]:-Ed_GDB_I O™ : "GDE:
1150306E", "mappad_Entrez_Geana_ID":"S54148", "mapped OMIM_ID":™511B45". "

mappad RefIeg™:"HM 0174467, "UniProt ID™: "QONYES", "mapped Ensembkl ID":™
ENSG00000154719%, "OCSC_ID": "uc0dZyln. 3%, "mapped Mouse_Genome Database ID®:™
MGI 1351 520"]

PEN®Z. ..

oo

Now lets extract Entrez_Gene_ID, Ensembl_Gene_ID, and UniProt_ID from the catalog:

[miO2417Rcrickd ~]15 cat mygenss . txt biar lookup =d
fdata5/bzifcataloge/bicr/vl /hgnef2012 08 12/hgne GRCh3IT.tev.bgz -p
Approved Symbol | bior drill -p Entrez Gene ID -p Ensembl Gene ID -p
UniProt ID

$UNENOWH lEntrez Gene IDEngembl Gene IDUniFrot ID
MEPLISS41483ENSGO000015471909NYRS

PANXZ2S6666ENSGOC0000TI1IS0096RDE

BECR1&TZENSGOOOD001Z043F3533E

[MICZIITecrickd ~1%

Example of Walking Cross References

The HGNC table does not contain information about the disease/condition, only the ID in OMIM. Lets
say you would like to also find this information for a select set of genes. In this case, we can use two

catalogs, (1) the HGNC catalog and (2) the genemap directly from OMIM. The figure below shows the
contents of the genemap catalog currently in BioR:

1
+
-
i
]
il
]
-
[11]
-
|
1
1
b
[
1
2]
4
]
(]

ALUHENCh

3 AUNENCHN_ 3 =

q AUHFHCWN_ 4
"Chraomoesom:s., Hap Entey Humb=r™: 1.1,
"HonthEntered": 59,
"DayT: 11,

"Year': B5,

"Cytogenetic_locaticon™: "lpter-p3&.13%,
"GeneSymbols®: "oCOW",

"ﬁﬁnn_ﬁhn:un'! mpm-,

"Title™: "Cataract, congenital; Volkmann type®,

"TiLLe_:unL": 5

"HIM Humber™: 115665,

b - L;a-:l."' : TFA",

"Commenta®: =",

"isardera™: "Cataract, cocngenital, Volkmann type (2317,

"Disorders_cont®: T =

a4

In this catalog, "MIM_Number" represents the OMIM id for the “Disorder” free text field describing the
disease. Given a list of genes, if we want the value of the “Disorder” field in OMIM we can cross-walk
from the gene list through the HGNC catalog to find the MIM number and then again to genemap catalog
to produce a Gene-OMIM_ID-Disorder file:

% cat mygenes.txt

MEPL3

PRBX 2

BRCA1

% cat mygenea.txt | bior loockup =4 Skhior/hgnc/201E DBE_12/hgnce GRCh3T.tev.bgz
-p Approved Symbol | bior drill -p mapped OMIM ID | bior lookup -d
Shior/omim/s2013 02 27 /genemap ERCh3i7.tsv.bgz -p MIM Mumber | bkior drill -p
Disorders

FUMEMNOWN_1mapped OMIM _IDDiscrders

MEFPL3%E118345

PRMNX2608421.

BECA1113703{Breast-owarian cancer, familial, 1}, 604370 (3); [Pancreatic

CANCEL .

Note: period "' always means the value was not in the dataset. So in this case, some genes are not
associated with disorders in OMIM.

Generating an OMIM Disorder Report for a Set of rsIDs

Want OMIM

cat example.vef bior wef to tisen | bior sverlap -—d

Scatalogs /HCEIGene,/GRCh3T pll/ genes.tsv.bgz | bior drill ---p GeneID ---p
gene ==-p MIM | cut ==-f% --- -—-complement | bior_ lookup =--d

ScatalogsSomim/2013 02 27/ genemap GRCh3I7.tsv.bgz ---p MIM Number |

bior drill ---p Dizorders > example.w_omim.

Use lookup to also find any disease/condition information in OMIM. First, the gene catalog just happens
to have the OMIM id ("MIM"), so alter the command to drill that out:

Want OMIM

cat example.vcf | bior wvef to_tison | bior_owverlap -—d
fcatalogs/NCBIGene/GRCh3T _pll/ genes.tsv.bgz | bior_drill ---p GenelD ---p
gene -—-p MIM | cut -—-f5% --—» ——- complement | bior lookup ---d
Scatalegs/omim/2013 02 27/ genemap GRCh37.tsv.bgz ---p MIM Number |

bior drill -—p Disorders > example.w_omim.

5 gar example.wvef | bisp wef to ejson | bior overlap -d
5hioc/HCEIGana//GRChIT?_pldsgenas. tsv.bgz | kior_drill —-p GensID —-p gens —-p MIM
| cut =f 9 ==gomplement | bicr_lookup =d

(hioc/omim /2013 Q2 27 genemap GRChIT.Lsv.bgz —p HIM Humber
bior pretty print

& COLUMH HAME COLUMN WVALUE

Looks like we want the column "Disorders":

$ cat example.vcf | bior wef to tison | bior overlap =d
fbior/NCBIGena /GRCh3IT_pll genes.tsv.bgz | bior_drill -p GenelD -p gene -p MIM

OK, lets go and get some information from some variant catalogs that are not Allele frequencies:

First, dbSNP has all kinds of useful information including

"INFO.dbSNPBuildID":

"INFO.SSR": SSR 1 Integer 247,783 0.49% SNP Suspect Reason Code SNP Suspect
Reason Code, 0 - unspecified, 1 - Paralog, 2 - byEST, 3 - Para_EST, 4 - oldAlign, 5 - other. Countin
column D is non-zero

Sequence Annotation Flags

"INFO.SCS": Integer 12,533 0.02% SNP Clinical Significance =~ SNP Suspect Reason Code, 0 -
unspecified, 1 - Paralog, 2 - byEST, 3 - Para_EST, 4 - oldAlign, 5 - other. Count in column D is non-zero
"INFO.CLN": CLN 0 Flag 31,524 0.06% SNP is Clinical Includes
LSDB,0MIM,TPA,Diagnostic

"INFO.SAO": SAO 1 Integer 14,908 0.03% SNP Allele Origin ~ SNP Allele Origin: 0 -
unspecified, 1 - Germline, 2 - Somatic, 3 - Both. Count in column D is non-zero

"_id": The rs_id, a (near)universal identifier for the Variant.

(to see a compiled list of what is in this, go to the bsi documentation: http://bsiweb.mayo.edu/dbsnp)
This text file is a good guide (downloaded from dbSNP:
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-snp_info_tags.txt)

To match variants, use same_variant:

Now build a table with: rs_id, dbSNPBuildID, SSR, SCS, CLN, SAO, and CLN, do this:

5 cat example.vef | bior_wef to_tjison | bior same wariant -d
$bior/dbSNP/137/00-A11_GRCh37.tsv.bgz | bior_drill -p _id -p dbSNPBuildID -p
INFO.S5R —-p INFQ.3CS -p INFQ.CLN -p INFO.SAQ -p INFQ.CLH | cut -f 9 —-

complement

unfortunately, the variants in this example file, did not have any results, as these annotations are rather
sparse. Finding variants with these properties can be a trick. Here is a trick that I use to cat all variants

from a specific gene:

§ zcat $bior/WCBIGens/GRCh3IT plifgenes.tsv.bgz | grep "\“gens'":%W'BRCAL\""
174119631241277500{" type":"gene"," landmark":"17"," strand™:"-"," minBP":
41186312, " _maxBF":41277500, Ygena":"BRCAL", "gene_synonym" :"BRCAL; BROCI:
BROVCAl; IRIS; FNCA4; PPPIRS53; PSCP; ENFS53", "note®:Fbreast cancer 1, early
onset; Derived by avtomated computational analysis using gene prediction
method: BestRefseq.”, "GeneIl":"672","HGHC":"1100", "HFRD":"0O0218", "MIM":"
113705"}

5

Then to find a variant in dbSNP with an SAO annotation:

COSMIC:

L T =

2 FOsS 40190405

§ cat example.wvcf | binr_vct_tn_tjscn | binr_same_variant -d

Sbior/fcosmic/vwe3 /CosmicCompleteExport GRCh37.tsv.bgz | bior_drill —p
Mutation_ID —-p Mutation_CDS -p Mutatinn_AA = Mu:atinn_ﬁ&ﬁhﬁ?_s:rand | cut -f
4 ——complement

t#fileformat=VCFv4.0
#EHRGMFDSIDREFRLTQURLF:LTER:N?OMutEtinn_IDMutatiDn_EDSHuta:inn_ﬁﬁMutatint_GRﬁ
h37 strand

1215848808r5116645B811GA.

2140190405rs115908228GA. . . 94254 c . B46G=Ap. G2165+
2230857373rs2240345AC. . .330401c.1005T>Gp. D335E-

2239621797Trs359786936GT. . . 39683, 65TC>Ap. F219P-

8

Want UCSC Tracks (blacklisted)cat example.vcf | bior_vcf_to_tjson | bior_overlap --d $catalogs/ucsc/hg19/
wgEncodeDacMapabilityConsensusExcludable_GR

Ch37.tsv.bgz | bior_drill --p score | complement > example.w_ucsc.vcf

UCSC:

The UCSC catalogs related to TREAT are the following:

export ucsc=$bior/ucsc/ ;

export blacklistedFile=$ucsc/hg19/wgEncodeDacMapabilityConsensusExcludable_GRCh37.tsv.bgz ;
export repeatFile=$ucsc/hg19/rmsk_GRCh37.tsv.bgz ;

export regulationFile=$ucsc/hg19/oreganno_GRCh37.tsv.bgz ;

export uniqueFile=$ucsc/hg19/wgEncodeDukeMapabilityRegionsExcludable_GRCh37.tsv.bgz ;
export tssFile=$ucsc/hg19/switchDbTss_GRCh37.tsv.bgz ;

export tfbsFile=$ucsc/hg19/tfbsConsSites_GRCh37.tsv.bgz ;

export enhancerFile=$ucsc/hg19/vistaEnhancers_GRCh37.tsv.bgz ;

export conservationFile=$ucsc/hg19/phastConsElements46wayPrimates_GRCh37.tsv.bgz ;

To annotate with any of these files, do something like this:

Eoatexanplecvef | bior vef o bjsen |+ bior overlap —d SbhlacklistedFile |
bigr drill -p score | cut -f 2 --complement

f¥fileformat=vCFvd.0

#CHROMPOSIDREFALTOUALFILTERINFOscore

1215848808rs116645811GA. ...

1215848808rs116645811GT. ...

121584BB808rall6645811GG. ...

1215848808rs116645811GC. ...

unfortunately, our example file does not overlap many of these rare features. Another way to think
about this is "what genes of interest overlap some UCSC genomic feature".

gane
MTHD1FZ23
MTHOD2PZHR
TTC34
FENU1-1
R5F01
HET1
Y20
HOTCH2ZHL
MBEPF17TFE
PHE1

PHEF]1 -BGLAEF
BCHMLZ
R¥YR2

MTHDZIFPZT

This list of genes could then be used in a lookup query later, or you could cut the JSON instead of the
gene name and use that to overlap the data in your VCF file in a filtering process.

A similar technique can be use to pair down the variants based on those variants that you do NOT want
because overlapping some genomic feature would indicate it is unlikely to be significant.

Putting it all Together - Making a Genomic Feature Annotation Program

Below is a simple example of an annotation program using the simple scripts.

% cat treatGF.bior

6. Examples Matching Alleles (bior_same_variant)

Allele Frequencies:

on the RCF:

BGI:

dbSNP:

ESP:

b
“CHD"™: {
"center”; "sanger”,
"protLSID": "urn:LSIilumina.hapmap.org:Protocol: Human_1M_BeadChip:37,
"assayLSID": "urn:LSID:sanger hapmap.org:Assay:H1Mrs1135638:37,
"panelLSID"; "urn:lsid:dee.hapmap.org:Panel:US_Chinese:4”,
"OC_code": "QC+",
"refallele_freq": 0.289,
“refallele_count™: 63,
"otherallele_freq™ 0.711,
"otherallele_count™ 155,
"totalcount”: 218
h
"GIH": {
"center”: "sanger”,
"protLsID”: "urn:Lslilluminahapmap.org:Protocol: Human_1M_BeadChip:3°,
"assayL51D": "urn:L5ID:sanger hapmap.org:Assay:H1Mrs1135638:3%,
"panelLSID": "urn:lsid:dec.hapmap.org:Panel:US_Gujarati: 47,
"QC_code"; "QC+",
"refallele_freq": 0.49,
"refallele_count": 97,
"otherallele_freq™: 0.51,
"otherallele_count": 101,
“totalcount”: 198
|3
“MEX": {
"center": "sanger”,
“protLSID": "urn:L5ID:illumina.hapmap.org:Protocol: Human_1M_BeadChip:3®,
"assayL5ID": "urn:LSID:sanger.hapmap.org:Assay:H1Mrs1135638:3",
"panelLSID": “urn:lsid:dec.hapmap.org:Panel:US_Mexican-30-trios:4",
"QC_code": "QC+",
“refallele_freq": 0.237,
"refallele_count": 27,
"otherallele_freq": 0.763,
“otherallele_count™: 87,
“totalcount”: 114
2
"YRI™: {
"center”: "sanger",
"protLSID": "urn:LSID:illumina.hapmap.org:Protocol: Human_1M_BeadChip:3,
"assayLSID": "urn:L5ID:sanger.hapmap.org:Assay:H1Mrs1135638:3",
"panelLSID": "urn:lsid:dcc.hapmap.org:Panel:Yoruba-60-trios: 4",

1000 Genomes:

Putting it All Together Building an AF Pipeline

TREAT] % cat treatAF.bicr

axport bior=fbiors

cat JSdevistdin | bi (= ol e :'_l' -:-_r_-'.:—.c-n "y

| bior_same_wvariant —-d Shioc/dbSHF/S13T/00-ALl _GRChIAT.tsvw.baz M

| bigr_drill -p _id -p IMNEQ.dbSHPBuildID —-p INFO.S5R —-p INFO.SCS -p INFO . CLH
—p IHEQ. S5A0 Y

1 biDI_:HmE_".I’ﬂriﬂl'lt —= =7 —d -Sb:i.nr."l::lsm:i.-t:_u"".'5-3.-'I:|:|=mi:E‘nmpl-=t-=Ex]:|-D::l:_GnRCh3?_
Eaw . bgz Y

| Bior drill -p Mutakiss ID -p Hutatiasn CDS -p Muktatien AR -p

Mutation GRCh3IT_atrand

| blor same wvariant =< =11 =d Sbhior/1000_ gencmes, 20110521 /ALL.WJS.

phagel release vi.20101123.anpa_lndels av.altes GRCh3V.taw.gz %

| blor drill -p INFO.RSH AF -p INFO.AME_AF -p INFO.AFF_AF -p INFO.EURE_AF %
| blor_same_wariant -c -15% -d Sbicr/BGI hgl%9/LucAMF_2XJd0exomeFlinal.maf GRCh3T.
caw.bgz ™,

| kPior_drill -p estimated_minor_allele_freg

| kior_same_wariant -< -16 —d S$bhicr/ESP/buildaT/ESPeS005I_GRChIT ., tsv.bgz

| Bior_drill -p INFO.MAF[O] -p INFO.MAF[L] -p INEQ.MAF[Z]

| bBior_same_wariant - -19 —d Sbhicr/hapmaps2Jl0-—

D-E-_J:Il‘l.ﬂ sell+III al].-a.'l.:_:E rn:l:_[.-i_GRl.':h F?.tsw.bgz M

I Bior_drill —-p CEU.refallele freq —p CEU.ocbtherallels Freqg o

| - /remoweSON_pl

TREART] 3

7. Extracting Data with JSONPaths (bior_drill)

To extract data that is embedded in a JSON document as an array you can use drill.path[1] to get the

first element in the array, drill.path[1].field to get a field in a json array or drill.path[*] to get all
elements in the array.

8. Command Line Tools

Want SNPeff

TETC example.vol | bior_shnpeff | bior_drill =g Effect =p Effect _impact —-p
Functional class -p Bmino acid change | cut —f 9 —— -—- complament >
example.w genes.vcl

Want SIFT & PolyPhen

cat axample.vwcf | bier_wvep | bior_drill -p Consegquence -p SIFT - PaolyPhen -p
ZIFT Score -p PolyFPhen Score cut ==-f 9 —e- —ce-pomplement > example.w genes.
wif

TREAT] S cat bcreatTOOLS bior

bicr wep < JSdewvi/stdin

| Biar drill -p Allels -p Gens -p Feature -p Feabture type -p Consagquence =p
cDHA position —-p CDS_pogition -p Frotein positicon —p Amino_acida -p Codons -p
HGHNC —p SIE"‘I"_TERM - S].'FT_E.I;I:-I-H -B PnlyPhcn_TERM - PDJ}PE‘hEJ‘l_ECDrE LY

| blor_snpeff

| Fiar_drill -p Effect —-p Effect_impact —-p Functional_class —p Codon_change -
p Amino _acid change -p Gene name —-p Gene bioType =-p Coding -p Transcript -p
Exon

TREAT] 5

9. Mixing In Scripts and Languages

To find all overlapping genes that are not the same gene:

roat Shior/NCEIGene/GRChIT pll/genes . tsv bgr | bior overlap —d
fbhior/vl/NCBIGena/GRCh3IT_plld/genes.tsv.bgz | perl - "while (<>) {chomp;
RBa=gplit SNt/ 5 by if(5a[3] ne Sad]){print Sa[3]."\e".Za[d]."wn"z1 }' |
bior drill -e -2 -p gene | bior drill -c -2 -p gene | less

10. Common Problems

Handling VCF Files with VERY large headers

All BioR commands store the header in memory. This is done because commands like bior_vcf_to_tjson
use the header to understand the structure of the data lines and parse the lines into JSON more
intelligently (e.g. identify numbers instead of strings, identify arrays, ect.). In production, we have
noticed that some headers are extreamly large (multiple megabytes). When a user runs BioR, the
header is expanded into objects in memory for each BioR command. This can lead to BioR slowing to a
crawl when the ram on the machine is exceeded. Internally what happens is that the header is chopped
off and stored in memory, then each row streams through the system as an array of strings. The data
rows are not that large, but the metadata in the header may get copied many times in memory as
transformations are done on the data. The best workaround for this problem is to use grep to cut off
all excess header lines (e.g. lines that are not descriptive) then push the BioR output on to the file.
Recombine the header if needed.

e.g.
zcat example.vcf.gz | head -n 10000 | grep -v "##" > mylongheader.vcf
zcat example.vcf.gz | bior_vcf_to_tjson | bior_mycommands >> mylongheader.vcf

Large Memory Requirements
Sometimes users complain about large memory requrirements from BioR - especially SNPEff. SNPEff,

when run in production requires 4Gb of Ram. BioR will align large insertions and deletions prior to
sending them to SNPEff using the same exact method used in SNPEff. When processing these large
variants, both BioR and SNPEff can crash. The current work-around for dealing with large variants is to
pre-screen them and filter them out to another file prior to annotating with SNPEff. Hopefully the BioR
team will be able to collect better statistics and not align large variants in the future.

BioR exits with some error | don’t understand
Rerun the same exact command with logging enabled (-1) and submit both the input file, and the results
of the log to the BioR team. We will try to help you ASAP.

11. Creating Catalogs

Indexing your Samples
Lets say you want to get variants in your sample that overlap a gene. One way to do this is to stream
the variants e.g:

* gcat example.wct | head
f¥lfileformat=VOoEvwd ., O

FOHROM POS 1D BREF ALT QUAL FILTER INMFO
21 26960070 r=ll6645811 G A

21 28965148 rs1135638 G A

21 26955172 reQld5Te T C
21 Z2e985205 rsl05T7EBAS T
21 28976144 rs116331755 A
21 26076222 raT2TE168 O T
21 26976237 raT2VE2A4 C T
21 Z2&978790 rsT53TTEE6 T C

]

G

=rab example.vel | bior wef to tison bBior overlap —-d
Shicr/HCBIGene/GRCh37 pll/genes.tsv.bgz grepg "\ gene’ "\ TPANKZNLWY
22 50616005 rs351%954%93 Cc G « . . ["CHROM®:"22","POS5":"50616005","ID":"
r=3519545%3", "BREF™ : ™C", "ALT" : "G", "QUAL":".", "FILTER" :".", "INFO™:{™." :tru=}, "
_Ad®:"rs353195493"%, " type":"variant®,"” landmark®:"22", " refpllele™:''C®, "
_alchalleles": ["C"], " minBP":50616005," maxBP":5061e005) (" type":"gene","
_landmark®™:"22"," strand™:"+"," minBP":50609160," maxBP™:50&618724, "gena™:"™
PANMZ'", "gane synonym" :"hPANXZ; P27, "note" :"pannaxin 2; Derived by automated
computaticonal analysis us=sing gene prediction method: BestBRefseg.™, "Gen=ID":
56666", "HEHC™: "B&O0" , "HERD" : "09760", "MIM™ : "60E421"]
22 50616806 rs5771206 2 G . . . {"CHROM™:"22"," P25 :"Z0616H06™, "ID":™
ra5TT1206"%, "EEF™ : "A" "ALT" : "G", "QUAL":" " "FILTER":" ", "INFQ": {".":true], "
_ddR:"rs5771206"," type":"variant”," landmark":"22",.," reflllele":"A","
_althlleles": ["G"]," minBP":50616B06," maxBE":50616806 1" _type":"gena","
landmark™:"22", " strand™:"+%, " minBPF": 50603160, " maxBEP™:506168724, "gene™ "
PANXZ", "gene aynonym':"hEFANX2; PXZ2®,"note":"pannexin 2; Derived by automated
computaticnal analysis using gene prediction method: BestBRefsegq.™,"Gen=ID":"
SobReT, THGRCT TR THERD s el THIMT i TeDEEZ1]
=

If you just want variants that overlap any gene, you can always do something like:

*zcat Shior/HCEIGens/

GRCh3T _pll/genes.tsv.bgz | bior overlap -d ./example.tsv.gz |
grep =v "[}" | less

That works fine for a single gene, but what if you are starting with a list of genes? e.g.

oAb mydenes, Lab
MRFL3ES

PANKZ

BRCA]

In this case you may want to use an index on your data. To create the index, do something like:

#cat example.vwcf | bior wef Lo tison grep "C#" | cut -f 1,2;9 |
bicor drill -k -p maxBP > example.tsw
#Eort -kl,1 -kZ2,2n example.tswv

*bgzip example.tsw
*tabix example.tswv.gz

>tabix -5 1 -b 2 -& 3 example.tsv.gz

Now use lookup to get the gene locations, and overlap to overlap those locations with your data:

*oat mygenas.txt | bior lockup -p gene
=d Sbior/NCBIGene/GRCh37T pll/genes.tsv.bgz |

bior overlap -d ./example.tsv.gz | bior_pretty print

You can now use bior_same_variant to annotate variants that overlap your genes.

Creating Custom Catalogs

One of the most powerful things about BioR is that users can publish their own catalogs and integrate
new data into the system. They can also share these catalogs with others making the system extensible
and much more powerful than a system where the catalogs must all be maintained by a single
annotation team.

The Publication Process

Publishing a catalog requires (1) a parser that understands arbitrarily formatted file formats, and (2)
indexing tools. Parsers convert arbitrary data representations into JSON with a set of 'golden
identifiers' the BioR system understands. Example 'golden identifiers’ include _landmark, _minBP, and
maxBP. 'Golden identifiers' are always prefixed with an underscore ('') and must be absolutely
consistent at both in terms of syntax and semantics. For example, _minBP uses the standard 1-based
coordnate system (e.g. NCBI/Blast) not interbase coordinates
(http://gmod.org/wiki/Introduction_to_Chado#Interbase_Coordinates), and _strand is represented as
+',"-", or ." and NOT 'complement' as in the gbs files from NCBI. One of the functions of a parser, is to
convert from arbitrary file formats into JSON, the other is to extract the 'golden identifiers' and place
them in the JSON. 'Golden identifiers' are created so that BioR programs (e.g. bior_overlap.sh) can
work on the information regardless of the source file format (e.g. VCF, GFF, GBS, XML, RelationalDB,
Tab-Delimited, ...).

As they become availible, parsers, will be exposed to users as command line tools. For example,
bior_vcf to_variants.sh is a parser that converts vcf to BioR JSON.

In summary, to make a custom catalog, you need:

1. Columns 1-3 bed-like (chr start stop) [1-based]
2. The 4" column is a series of key-value pairs enclosed by quotes and brackets
3. The 4 column contains “Golden identifiers” [_landmark, _minBP, and _maxBP]

Once this is created, use bgzip & tabix to compress and index it for genomic search. For those samples
that do NOT have a genomic position, use the following values (bior create catalog will do this
for you).

Golden Identifier Default Value
landmark UNKNOWN (a period ‘.’ is also ok)
minBP 0
maxBP 0

Zero is important because it has to be an integer and must be greater than zero. The JSON
does not have to have the golden attribute if you won't search on it.

Parsing and Converting the Data

If a parser for the file format is available (e.g. bior vcf to tjson,bior bed to tjson,ect)
publishing a custom catalog is extremely easy. Using the standard BioR tools, a publication pipeline can
be constructed rapidly. For example:

http://www.google.com/url?q=http%3A%2F%2Fgmod.org%2Fwiki%2FIntroduction_to_Chado%23Interbase_Coordinates&sa=D&sntz=1&usg=AFQjCNGkjeVxm7ra-91CE3ZAoC0vO59tgw

gcat 00-&ll.wef.ge | bilor wef to tjison.sh | cut -f 8 | bior drill.sh -k -p
_landmark -p minBP -p _maxBF > dbSNP.tav

This pipeline streams the original VCF file past the parser (bior_vcf _to_tjson), removes the content of the
original VCF (cut -f 9) - this is ok, as all of this information is duplicated in the JSON format, drill out the
key attributes (bior_drill.sh) so that they can be indexed, and then output to a raw data file (dbSNP.tsv).
The raw output file should look like this:

% head dbIZNP.tzwv

1 10144 10145 [“CHEOM" 1 "1", "EOS" 10144 "In" i treld47 73400, "EEE" L "
A", "BLT":"T","QDAL":" ., ", "FILTER" :".", "INFO": {"REPOS" 110145, "dbENFBEuildID" :
134, "SER" 10, "EARQ" : 0, WP 1 "Q00Q00Q00Q0Z00000Z000ZA0" "HGT" x 1, "VC" : "DIV" "ASP" 1
teue, "OTHEREG" : true} ., "_j.l::l" el d4TTI400, "_I.:,-'[Jlee" r""wvariant"™, "_1.1.::-::I|||.1.r. | U Bl LA L

_refAllele":"TR"," althlleles":["T"]," minEP":10144," maxBP":10145]

1 10177 10177 ["CHROM" :"1", "FOS":"10177", "ID": "r=201752861", "REF" "
&', "ALT"::"C", "OOAL" 2", "FILTER" :". ", "INFO": ["ESPOS" 110177, "dbSMPEuildID”:
137 "SSR" 10, "SAO" 10, "VE" 1 Q3000000000 5000002 0001 00" "HGT" x 1, "WC" 1 SNV, "ASP":
true; "OTHERKG" ; trum} ; "_'ir_:l" T "csZ01TSZEG1L" "_t1_,-'|::-r_‘-" r"variant"; "_'I.:i.".r_:lm.:i ck":"1";"
r.'lerf."'\.l le=le™ ", ".-.|.1I.."".1 leles™: ["C"] "_|||j.:'_3P" + 11T T, "_|||.-|..u3?" = 13177T]

Indexing the Data for Coordinate Based Search

For positional search, BioR supports indexing using Tabix. Tabix/bgzip should be installed in the RCF
environment. First, compress the raw input. Assuming it is sorted:

% bgzip dbSHP.tsv

Then run the tabix command:

5 tabix -5 1 -b 2 -2 3 dbSHF.tsv.gz &

That's it! you can now use your custom catalog as a database in BioR commands (e.g. bior_overlap.sh -d
/path/to/your/database.tsv.gz).

Hints on Creating Indexes on Custom Catalogs
In addition to coordinate based search, users may also want to search a custom catalog
based on IDs. The process is exactly the same as in indexing a catalog described earlier in

this document, but there are some gotcha’s that users need to be aware of.

1.

The catalog structure will not automatically join data. This can be frustrating as the data
provider may not give the data to you in a desirable form (e.g. you may want to know everything
the data provider knows about a gene, but they may have their data organized by variant or
drug) so you will have to ‘flip’ the data around so that all information about a gene can be
provided to users of your catalog. The BioR team has done this many times, and for Java
programmers, there is a robust library (BioR-Catalog) and examples to help in the publication of
new-complex catalogs.

The BioR indexer command currently does not tolerate duplicate keys, so while duplicate keys
can be in the data itself, you can’t index on those keys. Running bior_index_catalog with logging
enabled will help to ensure the keys you would like to index on are valid. To index multiple ways
simultaneously, multiple catalogs need to be created

Regardless of what tools are used to construct the JSON column, it must validate as proper JSON.
Use jslint to validate: http://jsonlint.com/

JSON should not contain fields that are empty. While adding period “.” As the value for a given
key will work, it wastes space and consumes additional CPU resources so is not recommended.

Use BioR to map SNP on rsID and find overlapping genes.

Say we obtained a simple tab-delimited file that is not in VCF format, but we still want to obtain an
annotation. The following file’s header for this is: rsid without the “rs”, chrom, position, and 0/1
representing presence or absence in our study. There are over 5 million in this file. The goal is to show
how the first 100 or 1000 of these map to various genes

i

i

H H g & -Jd &

13 1244684
13 32447221
7 91839109
T 91747130
T S17TTAS5E
T 92408328

[= =

T 92373453
92383887
11364200
113371a3
113687690
113680841
11602931
116028398
115837398
11597474

== R = R = R = =

S

(=]

P R [R |

11537155
11537104

| 1 H 1

T 1153689333

http://www.google.com/url?q=http%3A%2F%2Fjsonlint.com%2F&sa=D&sntz=1&usg=AFQjCNGFupkrrSIf40i1lDf2j5uScaM6BA
http://www.google.com/url?q=http%3A%2F%2Fjsonlint.com%2F&sa=D&sntz=1&usg=AFQjCNGFupkrrSIf40i1lDf2j5uScaM6BA

Try playing around with something like this to get started: (it may not be exactly what you want but we
can work on that)

NCBIGene:

5 cat example.vef | blor wef to_tjson | bleor overlap -d Sbior/HCEIGene/GRCR3IT pllfgenea.tsv.bgz | blor drill -p Gene
| cut =f % ==complemsent
fAfllaeformat=VOFvwd .0

Now, we want to find "Approved_Symbol", "Entrez_Gene_ID", "Ensembl_Gene_ID", "UniProt_ID", ...
We can use the BioR lookup command:

First, we don't know the catalog Structure of HGNC, here is a way to look at the structure of a catalog:

Case Study: Creating a Report that Maps rsIDs to Genes.

"Pubmed IDs™:
n25R106T"

1.

"RelfSeqg IDa™: [
"HM_13D073&"

1.

"FRecord Type™: "Standard®,

"Primary IDa": [].
rrecandar :,.'_I ="z []1».
"CCDS_Ths":

"OCpS12976.1"
1.
TWEGEA IDe": [1.
"mapped GOE_ID": "GDOB:119&638",
"mapped_Entrez_Gene_ID": "1,
"mapped_3MIM _ID"™: "13B670%,
"mapped Ref3eqg": "HM 1307B6M,
"OniProt ID™: "PO4AZ1T™,
"mapped_ Ensembl_ ID": "ENSGDOO0OD1Z1410%,
"OCSS_I0D®: "ucdl2gsd. 4",
"mapped Mouse Genome Database IDY: "MEIL:2152878%,
"mapped Rat Gencews Databasse I0Y: "RED:65417"

oW

To join the information in this catalog, to the information that we have collected in the gene table, we
need to tell bior what field in the HGNC table matches the LAST column in our sample data + annotation.
In this case, we will join on approved symbol (note: if you ever get an error with doing a lookup, you
may need an index file - look into the bior_index_catalog command or contact the bior team for help).

grep ""22.*rsd721l" gena_snp.dbl3Z.gene.coding.dat more
22 7332 UBEZL3 5372150 20047

22 150223 ¥DJICT =s372150 23030

22 164592 CCDC116 ra372150 15754
22 23753 SDF2L1 rs3T2150 BTEZ

22 23733 SDF2L1 rs3TZ10B 45008
22 23753 PPILZ r©s372150 -12903
22 23959 PPIL2 rs372108 O

22 29799 YPELL ra372150 -44455
22 23733 ¥PEL1 rs372108 -B2Z29

22 83746 L3METLZ r=3721 D0

22 15303534 CHADL rs3T721 D

.

22 2205 RANGAPL ra3TZl 14542

12. Sun Grid Engine

This section gives tips on how to configure a Sun Grid Engine (SGE) job to request the right amount of
resources to successfully execute one or more BioR toolkit commands.

Multiple Cores
By default, an SGE job will run on a single core. It’s possible to run a job on multiple cores is specified
via the gsub command’s parallel environment option “~pe”.

-pe parallel environment n[-[m]]|[-]m, ...

To get a list of available parallel environments setup by your SGE admin:

> gconf -spl

fluent pe

make
mpich2 141 hydra
mpich2 mpd

namd?2

openmpi

pvm

pvm-tight
threaded

Here is an example of requesting 4 cores for a job:

> gsub -pe threaded 4

The following table gives recommend core values for toolkit commands.

Command Cores Notes

Arbitrary UNIX commands 0 examples: /bin/cat, /bin/grep, /bin/cut

bior_vcf _to_tjson 1

bior_overlap 1

bior_same_variant 1

bior_lookup 1

bior_drill 1

bior_compress 1

bior_vep 2 Warning: Variant Effect Predictor is
implemented using PERL. The virtual
memory for the PERL process grows
linearly with more variants.

bior_snpeff 2 SnpEff loads data into memory for
performance

bior_annotate 29 Annotate performs many commands in
parallel

bior_pretty_print 1

Virtual Memory
Virtual memory is specified via the gsub command’s resource request list option “~1".

-1 resource=value, ...

NOTE: Resources specified with this option are per-core. If your job uses 2 cores, you will need to
divide the resource value by 2.

For virtual memory, the resource name to use is h_vmem. Here is an example of requesting 10MB of
virtual memory for a job running on 1 core:

> gsub -1 h vmem=10M

The following table gives recommend virtual memory values for toolkit commands.

Command Virtual Notes
Memory

Arbitrary UNIX commands 100M examples: /bin/cat, /bin/grep, /bin/cut

bior_vcf _to_tjson 600M

bior_overlap 600M

bior_same_variant 600M

bior_lookup 600M

bior_drill 600M

bior_compress 600M

bior_vep 1200M* Warning: Variant Effect Predictor is
implemented using PERL. The virtual
memory for the PERL process grows
linearly with more variants.

bior_snpeff 5100M SnpEff loads data into memory for
performance

bior_annotate 24000M

bior_pretty_print 225M

Resources for a Toolkit Pipeline
This section describes how to request the right resources for a multi-command Toolkit pipeline.
Here is an example script that will be submitted to SGE:

> cat example.sh
#!/bin/sh

dbSNP 137 catalog
DBSNP_CATALOG=/path/to/catalogs/dbSNP/137/00-A11 GRCh37.tsv.bgz

run toolkit pipeline to annotate my variants with dbSNP rsIDs
cat data.vcf | bior vcf to tjson | bior same variant -d $DBSNP CATALOG | bior drill -p INFO.ID

The number of cores needed to run this script’s processes in parallel can be calculated by referencing
the table in the Multiple Cores section. The example script will require 3 cores to run optimally.

Command Cores
example.sh 0
/bin/cat 0
bior_vcf _to_tjson 1
bior_same_variant 1
bior_drill 1

The virtual memory needed to run this script can be calculated by referencing the table in the Virtual
Memory section. The example script will require 2000M of virtual memory (100 + 100 + 600 + 600 +
600).

Command Virtual
Memory
example.sh 100M
/bin/cat 100M
bior_vcf _to_tjson 600M
bior_same_variant 600M
bior_drill 600M

The virtual memory setting h vmem is specified on a per-core basis. Since example.sh will be using 3
cores and 2000MB of virtual memory total, h_vem is 2000/3 or roughly 670.

Here is the final gsub command with the correct resource requirements:

> gsub -g MY QUEUE -1 h vmem=670M -pe threaded 3 -v PATH,BIOR LITE HOME example.sh

