
The Biological Repository (BioR) and BioRTools
User Guide v2.1.x

By Daniel Quest, Mike Meiners, Patrick Duffy, Raymond Moore, The BioR Team, and the BioR users.

Table of Contents:
1. Installation:

Installing inside Mayo with access to the Research Computing Facility (RCF)
Overview
Steps

Installing the Biological Repository Catalogs
Installing on a Stand-Alone Server or Workstation
Installing BioR Tools from Source
Java Heap Size

2. Overview
Introduction
Data Modeling
BioR Catalog Shortcut
Finding out what is in a Catalog
Showing the Commands in BioR Toolkit
Pretty Print
Get all Variants in a Gene

3. BioR Catalogs
The BioR Catalog Format
Catalog Creation Details
Catalogs Available In BioR

4. Examples Matching Genomic Features
Positional Matches Using Tabix
Annotating Variants with Genes that Overlap
Compressing output to enforce 1-1 semantics

5. Expanded Genes (Xrefs)
Indexing Catalogs
Looking Up Information about a Gene
Example of Walking Cross References
Generating an OMIM Disorder Report for a Set of rsIDs
Putting it all Together – Making a Genomic Feature Annotation Program

6. Examples Matching Alleles (bior_same_variant)
Putting it All Together Building an AF Pipeline

7. Extracting Data with JSONPaths (bior_drill)
8. Command Line Tools
9. Mixing In Scripts and Languages

To find all overlapping genes that are not the same gene:
10. Common Problems

Handling VCF Files with VERY large headers
Large Memory Requirements
BioR exits with some error I don’t understand

11. Creating Catalogs

https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.30j0zll
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1fob9te
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3znysh7
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2et92p0
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.tyjcwt
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3dy6vkm
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1t3h5sf
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.4d34og8
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2s8eyo1
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.17dp8vu
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3rdcrjn
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.26in1rg
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.lnxbz9
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.35nkun2
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1ksv4uv
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.44sinio
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2jxsxqh
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.z337ya
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3j2qqm3
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1y810tw
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.4i7ojhp
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2xcytpi
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1ci93xb
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3whwml4
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2bn6wsx
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.qsh70q
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3as4poj
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1pxezwc
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.49x2ik5
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2p2csry
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.147n2zr
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.u9ok6nh7vktc
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.23ckvvd
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.ihv636
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.32hioqz
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.hnp3sy4z9kma
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.41mghml
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2grqrue
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.vx1227
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3fwokq0
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.1v1yuxt

Indexing your Samples
Creating Custom Catalogs

The Publication Process
Parsing and Converting the Data
Indexing the Data for Coordinate Based Search
Hints on Creating Indexes on Custom Catalogs

Use BioR to map SNP on rsID and find overlapping genes.
Case Study: Creating a Report that Maps rsIDs to Genes.

12. Sun Grid Engine
Multiple Cores
Virtual Memory
Resources for a Toolkit Pipeline

https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.4f1mdlm
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.2u6wntf
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.19c6y18
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.3tbugp1
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.28h4qwu
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.nmf14n
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.37m2jsg
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.g6r9c7tcpf2
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.utuh5t4uyo5j
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.eajsc1gaun72
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.gnmvixa4848
https://docs.google.com/document/d/sOIx8klfal-VFwRINUgTHqA/headless/print#heading=h.8uof1lksql8y

The Biological Repository (BioR) and BioRTools
User Guide v 2.1.x

BioR is an annotation engine. Inside Mayo, it’s primary use is to annotate human variation, but it is not limited to that – it is a
general purpose genomic data integration tool that enables coordinate based searches and joins based on strings. BioR is like
programming using lego blocks, each block may not be exactly what you want, but you can put the blocks together to create
programs extremely rapidly. The component ‘blocks’ include all existing UNIX commands, stand alone tools (e.g. bedtools), and
the bior_toolkit. This user guide will help get you up to speed in how to use BioR in one document. Please note that BioR is a
complex system, and you should have some experience with UNIX (especially pipes) before using BioR.

1. Installation:

Installing inside Mayo with access to the Research Computing Facility (RCF)
If you have access to the RCF, you are in luck! We have already installed BioRTools for you, all you need to do is put it in your
path. Here are the steps to do that:

Overview

The CLI is available through the mayobiotools utility. No software needs to be downloaded as it's already
pre-installed. Make sure you select version 2.0 or greater.

Steps

1. login to an RCF submission node server (example: "ssh crick6.mayo.edu")

2. execute "mayobiotools"

3. scan the list of packages for "java"

4. type corresponding package number and press enter

5. select a version that is 1.6 or higher

6. scan the list of packages for "bior_scripts"

7. type corresponding package number and press enter

8. select "2.1.0" version

9. quit mayobiotools and save changes

10. logout and log back into the RCF submission node server

11. BioR Command Line Client commands are now available

12. Try this from the command line: "bior_vcf_to_tjson -h" if BioR is working you should see a help message.

13. To expore the bior scripts available on the command line type bior followed by a tab.

Installing the Biological Repository Catalogs
On the RCF, no installation is needed. Catalogs can be found at $BIOR_CATALOG ($bior in this documentation) If you are doing a
stand alone server, download the catalog flat files and place them locally on your server in a similar directory structure. BioR
Tools does not make any assumptions about the location of catalogs relative to each other, but it does assume that tabix indexes
are in the same directory as the compressed catalog and that ID indices are in a folder called index in the same directory as the

catalog.

Installing on a Stand-Alone Server or Workstation
BioR is written in Java, so in principle it will work on any machine, but it depends on some command
line tools (e.g. SNPEFF, VEP) that are not so friendly. The development team has BioR working on both
Macintosh and Linux. To install, first make sure first that Java 1.6+ is installed and on your path (Java
1.7 is preferred). Then download the BioR executable and place it in your path.

Download Links:
You can download BIOR and Catalog datasources from http://bioinformaticstools.mayo.edu/research/bior/.

Toolkit Installation:

First step is to unzip the bior_version zip file you downloaded.
Unzip bior_version.zip -d target directory

If you want to extract files in current directory space.
Unzip bior_verison.zip

Make sure all your files in bior_pipeline project are executable.
chmod -R ugo+x bior_version directory

Now you need to setup the environment variables and add to the path.
export BIOR_LITE_HOME=YOUR BIOR_ FOLDER
export PATH=$BIOR_LITE_HOME/bin:$PATH

Now try bior_ and press tab key twice on terminal. Now you will see all bior commands displayed.

Just to verify try bior_drill –h to check toolkit is properly installed.

Now you have successfully installed the toolkit. Next step is to download catalogs.

Catalogs Installation:

Now extract the downloaded catalogs into a directory.
tar –xvf catalogfile.tar -C TARGET DIR

Make sure you extract all catalogs into same target directory.

Now you will need to set the properties.

You will find a file named bior.properties under the folder conf in your bior_version directory.

This is the file where you need to set the tools path and home path of catalogs directory.

Tool commands like bior_vep and bior_snpeff and as well as bior_annotate make use of this properties
file.

Now in the file you need to set fileBase=”catalogs directory” value to your catalogs directory.

http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2Fresearch%2Fbior%2F&sa=D&sntz=1&usg=AFQjCNFqZFoAZrPJiMH1sjP12XBtE7hxZg
http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2Fresearch%2Fbior%2F&sa=D&sntz=1&usg=AFQjCNFqZFoAZrPJiMH1sjP12XBtE7hxZg

Example : fileBase=/home/ubuntu/catalogs/
Next step is tools installation.

Tools Installation and Setup

We have integrated two tools SNPEff and Variant Effect Predictor (VEP) into our toolkit.

SNPEff:

Currently we support SNPEff verison 2.0.5d.This was recommended by GATK for worst pick logic.
Installation files and instructions can be found at
http://snpeff.sourceforge.net/download.html
If you using linux or Mac you can just use wget command to download the files below.
http://sourceforge.net/projects/snpeff/files/snpEff_v2_0_5d_core.zip
Database you need to download is at
http://sourceforge.net/projects/snpeff/files/databases/v2_0_5/snpEff_v2_0_5_GRCh37.64.zip
Make sure to change SNPEFF config file snpEff.config to include the path to the database you
downloaded.

Variant Effect Predictor (VEP):

The Version of VEP we support is 2.7.
http://useast.ensembl.org/info/docs/tools/vep/script/vep_download.html#versions
You can follow the installation instructions in the above page.

After you have installed SNPEff and VEP now you need to set the paths in bior.properties file located in
conf folder under your bior_pipeline directory.
Example:
###SNPEFF ==
SnpEffJar=/../snpeff /2.0.5d/snpEff.jar
SnpEffConfig=/../snpeff/2.0.5d/snpEff.config

###VEP ===
BiorVepPerl=/../perl/5.14.2/bin/perl
BiorVep=/../vep/variant_effect_predictor/variant_effect_predictor.pl
BiorVepCache=/../vep/variant_effect_predictor/cache/

Installing BioR Tools from Source
Source installation requires that you have both Java 1.7 and Maven installed and on your path. It also
requires that you have access to the Mayo NEXUS servers or you place several libraries in your ~/.m2
directory.

If you have troubles installing BioR or compiling it, please contact the BioR Team
(dlrstitbiorall@mayo.edu) so we can update the documentation and make the process easier.

Java Heap Size
On some machines, the default JVM size is 2GB. This is very large for BioR. By default the BioR toolkit is

http://www.google.com/url?q=http%3A%2F%2Fsnpeff.sourceforge.net%2Fdownload.html&sa=D&sntz=1&usg=AFQjCNFC7HXCHt19HzTleRgk2aPP_CBmZw
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsnpeff%2Ffiles%2FsnpEff_v2_0_5d_core.zip&sa=D&sntz=1&usg=AFQjCNGEeZ_zxDHFj190NCHhN1Ds7EHbMg
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsnpeff%2Ffiles%2Fdatabases%2Fv2_0_5%2FsnpEff_v2_0_5_GRCh37.64.zip&sa=D&sntz=1&usg=AFQjCNF1IKQB5xoy95IBf72VEYqUqs_Png
http://www.google.com/url?q=http%3A%2F%2Fuseast.ensembl.org%2Finfo%2Fdocs%2Ftools%2Fvep%2Fscript%2Fvep_download.html%23versions&sa=D&sntz=1&usg=AFQjCNFJfUKK3tV-yDufFLgb0Jxi8ugnoQ

capped at 128M. To change this setting, change the Maven bior_pipeline/pom.xml (e.g.
<jvmOpts>-Xmx128m</jvmOpts>).

2. Overview

Introduction
BioR uses a Pipe-And-Filter architecture. Data to be annotated by BioR is streamed through a pipeline, a
sequence of one or more pipes. Pipes is based on Flow Based Programming by J.P. Morrison.
DataFlow-Article, Flow-Based-Programing.

Figure 1: BioRTools works by adding annotation to the right on the original file.

BioR leverages UNIX pipes to flow data from program to program. As BioR programs work on the data,
they place annotation to the right (the red, blue and green colums in Figure 1).

Data Modeling
BioR has adopted a lightweight approach to modeling annotation data. Only core annotation fields are
modeled to enable supported search capabilities (e.g. coordinate search, accession ID search). Anything
not classified as core is modeled into a "schema-free" data structure.

http://www.google.com/url?q=http%3A%2F%2Fwww.dossier-andreas.net%2Fsoftware_architecture%2Fpipe_and_filter.html&sa=D&sntz=1&usg=AFQjCNHdXdQC4O8nK9EZEUCLFvGR2Jau-g
http://www.google.com/url?q=http%3A%2F%2Fwww.drdobbs.com%2Fdatabase%2Fdataflow-programming-handling-huge-data%2F231400148%3Fpgno%3D2&sa=D&sntz=1&usg=AFQjCNGIBZakR7__y1F_Z1RCc0Q9h2ucPw
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2FFlow-Based-Programming-2nd-Application-Development%2Fdp%2F1451542321%2F&sa=D&sntz=1&usg=AFQjCNHERLu7_Fu4DG5wuNR3YlghMSM8Ww

BioR Catalog Shortcut
BioR commands commonly use long paths to files. One of the first things you will want to do when
using BioR is to make an alias to the location of the BioR catalogs. For example if the BioR catalogs are
located in $bior
Then, on bash, execute the following command at the command line:

$ export bior=/data/path/

You may want to put this command in your .bashrc or .bash_profile so that the $bior environment
variable shows up next time you log in.

Finding out what is in a Catalog
Each data source is 'published' into a BioR catalog file for use by the BioR scripts. A Catalog is a
collection of files (both data and indexes) that is understood by the BioR Pipes infrastructure. BioR's
reference data consists of the raw files downloaded/updated and made available to BioR users. These
files ARE NOT catalogs. Catalogs are transformed into the BioR standard catalog structure so that pipes
can work on the content. BioR catalogs are bgziped files that contain 4 columns (_landmark, _minBP,1

_maxBP, and JSON). A more comprehensive description of the BioR catalog format is in Chapter 3.

To see what is in a catalog, use the zcat command (gzcat on a mac) followed by the catalog filename,
followed by less:

$ zcat $bior/NCBIGene/GRCh37_p10/genes.tsv.bgz | less
1 10954 11507
{"_type":"gene","_landmark":"1","_strand":"+","_minBP":10954,"_maxBP":11507,"gene":"LOC100506145","no
te":"Derived by automated computational analysis using gene prediction method: GNOMON. Supporting
evidence includes similarity to: 1 Protein","pseudo":"","GeneID":"100506145"}
...

1 http://samtools.sourceforge.net/tabix.shtml

http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2Ftabix.shtml&sa=D&sntz=1&usg=AFQjCNGtCxeaosIW-Jo6mvzdFQmiHA2UNQ

Unix less is a good-low-memory command to look at data. Type q <enter> to quit less. Type man
less at the command line to see how to use the less command. You can use up and down arrows to
scroll through the data a line at a time or ‘f’ and ‘b’ to scroll a page at a time.

Showing the Commands in BioR Toolkit
All BioR commands start with bior_ so once BioRTools is installed and on your path you can type
bior_ followed by the tab key (twice) and it will show you all of the current commands in the toolkit:

$ bior_
bior_annotate bior_create_catalog_props bior_lookup
bior_snpeff bior_vep bior_bed_to_tjson
bior_create_config_for_tab_to_tjson bior_overlap bior_tab_to_tjson
bior_compress bior_drill bior_pretty_print
bior_tjson_to_vcf bior_create_catalog bior_index_catalog
bior_same_variant bior_vcf_to_tjson

Table 1 has a more complete description of these commands.
Commands in the toolkit operate on tab delimited data with a VCF style header (starting with “#”).
Commands in the toolkit insert additional annotation to the right. Raw annotation is obtained by
comparing JSON objects in columns to JSON objects in catalogs. Table 1.0 shows the format of columns
<in,out> of each BioR function. For example bior_vcf_to_tjson takes as an input VCF columns (and the
header) and outputs VCF + JSON in the last column.

Command Input,
Output

Description

Transform Functions

bior_overlap TJSON,
TJSON

Extract annotations from a catalog based on
genomic location overlap. The overlap is
computed from the Start and End genomics
position of a variant.

bior_same_variant TJSON,
TJSON

Extract annotations from a catalog based on
variant position, reference and alternate allele
definition.

bior_lookup TJSON,
TJSON

Extract annotations from a catalog based on
matching values of an identifier.

bior_snpeff TJSON,
TJSON

Use SNPEffect1 to annotate variants.
Chromosome ID, Start and Stop genomics
position, reference and alternate allele of the
variant is required .

bior_vep TJSON,
TJSON

Use VEP2 to annotate variants. Chromosome ID,
Start and Stop genomics position, reference and
alternate allele of the variant is required.

bior_drill TJSON,
TJSON

Extract an element from nested JSON string.

bior_compress TJSON,
TJSON

Compress entries from provided set of
identifiers into a single entry with each value
separated by a delimiter.

Utility Functions

bior_index_catalog identifier,
index

Index the specified identifier in a catalog.
Indices a stored in a separate index file.

bior_create_catalog TJSON,
catalog

Convert a text tabulated file into a catalog.
Chromosome ID, Start and End genomics
position fields have to be explicitly named.

bior_ create_catalog_props catalog,
property

Create property files from the metadata
extracted from a catalog. Property files are
needs for proper metadata handling.

bior_create_config_for_tab_to_tjson
TSV,config Create a configuration file that describes

column description. This file is needed when
uploading a tab delimited file.

Input/Output Functions

bior_vcf_to_tjson VCF,
TJSON

Load a VCF file and convert to TJSON format.

bior_tjson_to_vcf TJSON,
VCF

Convert TJSON to VCF format for file output.

bior_bed_to_tjson BED,
TJSON

Load a BED file and convert to TJSON format.

bior_tab_to_tjson TSV,
TJSON

Load a tab-delimited file and convert to TJSON
format.

bior_pretty_print TJSON,
STDOUT

Convert TJSON in a readable format for screen
or file output.

Miscellaneous Functions

bior_annotate VCF,
TJSON

Append to the VCF ‘info’ field a set of commonly
used annotations.

Table 1: List of commands available in the BioR Toolkit. Detailed description and example is displayed
when executing the command with the –h flag.
1Cingolani, P. et al. (2012) A program for annotating and predicting the effects of single nucleotide

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly
(Austin). 6(2) :p. 80-92.
2McLaren W et al. (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP
Effect Predictor. BMC Bioinformatics 26(16):2069-70

Most every one of these commands supports the –h (help) flag to get information about how to use the
command. To get help on bior_vcf_to_tjson type:

$ bior_vcf_to_tjson h

NAME
bior_vcf_to_tjson converts VCF data into JSON as an additional column

SYNOPSIS
bior_vcf_to_tjson [log] [help]
...

Several of the above functions use ‘Golden Identifiers’ to match records across catalogs. Table 2 shows
the current golden identifiers used in the codebase and what function(s) use them.

‘Golden Identifier’ Functions Definition
_landmark bior_overlap,

bior_same_variant
Chromosome, or sequence
ID that the interval is located
on

_minBP bior_overlap,
bior_same_variant

Minimum 1-based position
(e.g. NCBI coordinates) on
the landmark sequence

_maxBP bior_overlap,
bior_same_variant

Maximum 1-based position
on the landmark sequence

_refAllele bior_same_variant REF as in VCF standard

_altAlleles bior_same_variant ALT as in VCF standard

Pretty Print
Data in the 4th column of a catalog is stored as JSON. JSON can be deeply nested and hard to read if it is
all smashed into one line. BioR has a command bior_pretty_print that can make reading JSON
text easier. Take the earlier example and replace less with bior_pretty_print:

$ zcat $bior/NCBIGene/GRCh37_p10/genes.tsv.bgz | bior_pretty_print
COLUMN NAME COLUMN VALUE

1 UNKNOWN_1 1
2 #UNKNOWN_2 10954
3 #UNKNOWN_3 11507
4 #UNKNOWN_4 {
 "_type": "gene",
 "_landmark": "1",
 "_strand": "+",
 "_minBP": 10954,
 "_maxBP": 11507,
 "gene": "LOC100506145",
 "note": "Derived by automated computational analysis using gene prediction method:
GNOMON. Supporting evidence includes similarity to: 1 Protein",
 "pseudo": "",
 "GeneID": "100506145"
 }
$

Use –r to specify the row to pretty print. This is very useful when handling sparse data, where the
values for columns you are interested in do not appear on every line. In JSON if there is no value for a
given key, the key is not shown (instead of reporting NULL), so you may need to hunt around in the
dataset a bit to find keys of interest.

Get all Variants in a Gene
Lets do something useful -- say we wanted all genetic variants in VCF format that overlap the BRCA1
gene from dbSNP. This section will illustrate how to use BioR to rapidly build a program that does just
that. BioR is executed at the Linux/UNIX command line, so any command that is available at the
command line can be used with BioR (grep, cut, sed, awk, perl, …). Lets start with the echo command to
find BRCA1 in the gene catalog.

$ echo "BRCA1" | bior_lookup p gene d $bior/NCBIGene/GRCh37_p10/genes.tsv.bgz | bior_pretty_print
COLUMN NAME COLUMN VALUE

1 UNKNOWN_1 BRCA1
2 LookupPipe {
 "_type": "gene",
 "_landmark": "17",
 "_strand": "",
 "_minBP": 41196312,
 "_maxBP": 41277500,
 "gene": "BRCA1",
 "gene_synonym": "BRCAI; BRCC1; BROVCA1; IRIS; PNCA4; PPP1R53; PSCP; RNF53",
 "note": "breast cancer 1, early onset; Derived by automated computational analysis
using gene prediction method: BestRefseq.",
 "GeneID": "672",
 "HGNC": "1100",
 "HPRD": "00218",

 "MIM": "113705"
 }
$

The UNIX pipe (‘|’) allows you to stream the output of one command to the next. In this example, echo
prints BRCA1 to the screen. bior_lookup uses this ID to find the entry in the gene catalog with the
key gene and value ‘BRCA1’. Now we have the genomic coordinates for BRCA1. Lets use these
positions to find all catalog entries in dbSNP that are between 41196312 and 41277500 on
chromosome 17.

$ echo "BRCA1" | bior_lookup p gene d $bior/NCBIGene/GRCh37_p10/genes.tsv.bgz | bior_overlap d
$bior/dbSNP/137/00All_GRCh37.tsv.bgz | bior_pretty_print
COLUMN NAME COLUMN VALUE

1 UNKNOWN_1 BRCA1
2 LookupPipe {
 "_type": "gene",
 "_landmark": "17",
 "_strand": "",
 "_minBP": 41196312,
 "_maxBP": 41277500,
 "gene": "BRCA1",
 "gene_synonym": "BRCAI; BRCC1; BROVCA1; IRIS; PNCA4; PPP1R53; PSCP; RNF53",
 "note": "breast cancer 1, early onset; Derived by automated computational analysis
using gene prediction method: BestRefseq.",
 "GeneID": "672",
 "HGNC": "1100",
 "HPRD": "00218",
 "MIM": "113705"
 }
3 OverlapPipe {
 "CHROM": "17",
 "POS": "41196363",
 "ID": "rs8176320",
 "REF": "C",
 "ALT": "T",
 "QUAL": ".",
 "FILTER": ".",
 "INFO": {
 "RSPOS": 41196363,
 "RV": true,
 "GMAF": 0.0050,
 "dbSNPBuildID": 117,
 "SSR": 0,
 "SAO": 0,
 "VP": "050000800201040517000100",
 "GENEINFO": "BRCA1:672",

 "WGT": 1,
 "VC": "SNV",
 "REF": true,
 "U3": true,
 "VLD": true,
 "HD": true,
 "GNO": true,
 "KGPhase1": true,
 "KGPROD": true,
 "OTHERKG": true,
 "PH3": true
 },
 "_id": "rs8176320",
 "_type": "variant",
 "_landmark": "17",
 "_refAllele": "C",
 "_altAlleles": [
 "T"
],
 "_minBP": 41196363,
 "_maxBP": 41196363
 }
$

This command shows the first match in dbSNP that overlaps the BRCA1 gene according to the NCBI
annotation. The version of dbSNP used to publish the catalog was a VCF file, therefore many fields from
the VCF standard are represented in the JSON. A combination of the UNIX cut command and
bior_drill can quickly extract a VCF file. When trying this example, decompose the commands and
use them one at a time to understand what each command is doing.

$ echo "BRCA1" | bior_lookup p gene d $bior/NCBIGene/GRCh37_p10/genes.tsv.bgz | bior_overlap d
$bior/dbSNP/137/00All_GRCh37.tsv.bgz | bior_drill p CHROM p POS | cut f 1,3,4 | head 10

##BIOR=<ID="bior.gene37p10",Operation="bior_lookup",DataType="JSON",ShortUniqueName="gene37p10",Sourc
e="NCBIGene",Description="NCBI's Gene Annotation directly from the gbs
file",Version="37p10",Build="GRCh37.p10",Path="/data5/bsi/catalogs/bior/v1/NCBIGene/GRCh37_p10/genes.
tsv.bgz">
##BIOR=<ID="bior.dbSNP137",Operation="bior_overlap",DataType="JSON",ShortUniqueName="dbSNP137",Source
="dbSNP",Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00All_GRCh37.t
sv.bgz">
##BIOR=<ID="bior.dbSNP137.CHROM",Operation="bior_drill",Field="CHROM",DataType="String",Number="1",Fi
eldDescription="Chromosome. (VCF
field)",ShortUniqueName="dbSNP137",Source="dbSNP",Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00All_GRCh37.t
sv.bgz">
##BIOR=<ID="bior.dbSNP137.POS",Operation="bior_drill",Field="POS",DataType="Integer",Number="1",Field

Description="The reference position, with the 1st base having position 1. (VCF
field)",ShortUniqueName="dbSNP137",Source="dbSNP",Description="NCBI's dbSNP Variant
Database",Version="137",Build="GRCh37.p5",Path="/data5/bsi/catalogs/bior/v1/dbSNP/137/00All_GRCh37.t
sv.bgz">
#UNKNOWN_1 bior.dbSNP137.CHROM bior.dbSNP137.POS
BRCA1 17 41196363
BRCA1 17 41196368
BRCA1 17 41196372
BRCA1 17 41196403
BRCA1 17 41196408

The result: a simple VCF-like file constructed for all variants in the BRCA1 gene! There are a few small
fixes that will need to be made to make it truly VCF-compliant, and this quickstart glosses over many
features such as the metadata and headers. These and many other issues will be covered in more detail
in the following sections.

3. BioR Catalogs

The BioR Catalog Format
BioR enables users to rapidly transform tabular, hierarchical (e.g. XML) relational, and flat files into
catalogs that can be indexed and searched. Catalogs are read-only snapshots of annotation data. In
production, we snapshot data sets from outside groups and run an automated ‘publishing’ process that
keeps all of the BioR catalogs up to date with reference data sources. Data in catalogs is organized as a
BED-JSON hybrid (a subset of TJSON, or tab-delimited JSON). Columns 1-3 are identical to the required
fields in BED files2,3 and thus allow many existing tools such as Tabix to work directly on BioR catalogs.
Column 4 is a JSON string encoded object representing the entire contents of the original file. BioRTools
depends on golden identifiers (identifiers that start with an underscore) to enable search. Golden
identifiers are semantically-consistent tightly-controlled fields that are used by the toolkit to enable
filtering and search (e.g. _minBP/_maxBP corresponds to one-based fully-closed genomic min/max
base-pairs).

Catalog Creation Details
As an illustration, we will take a single gene BRCA1 and show it in the original annotation file and in
BioR Catalog structure.

ORIGINAL
The gene BRCA1 is shown below from the original Genbank formatted file:
hs_ref_GRCh37.p10_chr17.gbs.gz:

gene complement(41196312..41277500)
 /gene="BRCA1"
 /gene_synonym="BRCAI; BRCC1; BROVCA1; IRIS; PNCA4;
 PPP1R53; PSCP; RNF53"
 /note="breast cancer 1, early onset; Derived by automated
 computational analysis using gene prediction method:
 BestRefseq."
 /db_xref="GeneID:672"

 /db_xref="HGNC:1100"
 /db_xref="HPRD:00218"
 /db_xref="MIM:113705"

CATALOG
Below is the corresponding Catalog structure for the final column of gene BRCA1.

{
"gene": "BRCA1",
"gene_synonym": "BRCAI; BRCC1; BROVCA1; IRIS; PNCA4; PPP1R53; PSCP; RNF53",
"note":"breastcancer1,earlyonset;Derivedbyautomatedcomputationalanalysisusinggene

prediction method: BestRefseq.",
"GeneID": "672",
"HGNC": "1100",
"HPRD": "00218",
"MIM": "113705",
"_type": "gene",
"_landmark": "17",
"_strand": "",
"_minBP": 41196312,
"_maxBP": 41277500

}

The catalog format is simple, easy to read, and can be readily processed by third party JSON libraries.
The format is also incredibly flexible, and has allowed us to ingest deeply nested XML structures and
complex relational schemas into BioR. Construction of catalogs can be done with whatever
programming language the user is familiar with. Once the raw data is formatted, bgzip and tabix can be
used to compress and then index the catalog for genomic coordinate-based queries.

Catalogs Available In BioR
The BioR team has created more than 8,000 catalogs relevant to variant annotation from the following
sources.

Data sources currently available in BioR

Datasource URL Version

1000Genomes http://www.1000genomes.org/category/ftp 20110521

BGI http://soap.genomics.org.cn/soapsnp.html hg19

COSMIC http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/ V63

dbSNP http://www.ncbi.nlm.nih.gov/snp/ 137

ESP6500 https://esp.gs.washington.edu/drupal/ build37

HapMap http://hapmap.ncbi.nlm.nih.gov 2010-08_phaseII+
III

HGNC http://www.genenames.org 2012_08_12

http://www.google.com/url?q=http%3A%2F%2Fwww.1000genomes.org%2Fcategory%2Fftp&sa=D&sntz=1&usg=AFQjCNHqRQjJ-9e56EMEaIV9lgu9Kv1VtA

miRBase http://www.mirbase.org 8_12_12

NCBIGene http://www.ncbi.nlm.nih.gov/gene GRCh37_p10

OMIM http://www.omim.org 2013_02_27

PharmGKB http://www.pharmgkb.org/downloads/ June 2013

DrugBank http://www.drugbank.ca/downloads 3.0

Therapeutic
Target Database

http://bidd.nus.edu.sg/group/cjttd/TTD_Download.asp 4.3.02

UCSC http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/

(note catalogs were created for each UCSC track)

hg19

Table S3: list of data sources from which BioR catalogs are derived. A description of the catalog is available at
http://bioinformaticstools.mayo.edu

4. Examples Matching Genomic Features

Positional Matches Using Tabix
BioR uses the same technology for compression (BGZIP) and coordinate based indexing as Tabix . This2

means that coordinate-based queries can use the traditional Tabix commands. For example, to show all
genes in a BioR catalog on Chromosome 17 in the range 41196312 - 41277500:

$ which tabix
/usr/bin/tabix

$ which bgzip
/usr/bin/bgzip

$ tabix $bior/NCBIGene/GRCh37_p10/genes.tsv.bgz 17:4119631241277500
17 41196312 41277500
{"_type":"gene","_landmark":"17","_strand":"","_minBP":41196312,"_maxBP":41277500,"gene":"BRCA1","ge
ne_synonym":"BRCAI; BRCC1; BROVCA1; IRIS; PNCA4; PPP1R53; PSCP; RNF53","note":"breast cancer 1, early
onset; Derived by automated computational analysis using gene prediction method:
BestRefseq.","GeneID":"672","HGNC":"1100","HPRD":"00218","MIM":"113705"}
174123127841231833{"_type":"gene","_landmark":"17","_strand":"+","_minBP":41231278,"_maxBP":41231833,
"gene":"RPL21P4","gene_synonym":"RPL21_58_1548","note":"ribosomal protein L21 pseudogene 4; Derived
by automated computational analysis using gene prediction method: Curated
Genomic.","pseudo":"","GeneID":"140660","HGNC":"17959"}

On the Mayo RCF servers, tabix is located at: /projects/bsi/bictools/apps/alignment/tabix/0.2.5/tabix. You may need to type something
like /usr/bin/tabix instead of just tabix if it is not in your path (/usr/bin is usually is your path). To put it in your path edit your $PATH
environment variable. In bash this is done by typing export PATH=$PATH:/usr/bin

2 http://bioinformatics.oxfordjournals.org/content/27/5/718.abstract

http://www.google.com/url?q=http%3A%2F%2Fwww.pharmgkb.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNGTv_LGplJhHXGclTyLQukg7Yvq-w
http://www.google.com/url?q=http%3A%2F%2Fbioinformaticstools.mayo.edu%2F&sa=D&sntz=1&usg=AFQjCNGHYEv0RmzwdqNcVhOYUU2KJ4cuDw
http://www.google.com/url?q=http%3A%2F%2Fbioinformatics.oxfordjournals.org%2Fcontent%2F27%2F5%2F718.abstract&sa=D&sntz=1&usg=AFQjCNGq4CMwQ9VQag3K8-xwgtNUAC_5sw

Annotating Variants with Genes that Overlap
A common and simple use of BioR is to ask what genes overlap variants of interest. NCBI Generates an
annotation of genes that they store here: ftp.ncbi.nih.gov/genomes/Homo_sapiens

This set of files is one of the authoritative sources for storing both the IDs for genes and the genomic
coordinates. Unfortunately the gbs file is hard to use without the use of libraries. BioR allows you to do
many quick and dirty analyses based on the position of genes. The following example assumes a
VCF-like file with only 8 columns e.g.:

$ head example.vcf
##fileformat=VCFv4.0
#CHROM POS ID REF ALT QUAL FILTER INFO
12 1584 8808 rs116645811 G A ...
21 2696 5148 rs1135638 G A ...
21 2696 5172 rs010576 T C ...
21 2696 5205 rs1057885 T C ...
21 2697 6144 rs116331755 A G ...
21 2697 6222 rs7278168 C T ...
21 2697 6237 rs7278284 C T ...
21 2697 8790 rs75377686 T C ...

Now, lets annotate these variants based on the genes they overlap:

$ cat example.vcf | bior_vcf_to_tjson | bior_overlap d $bior/NCBIGene/GRCh37_p10/genes.tsv.bgz |
bior_drill p GeneID p gene | cut f 9 complement > example.vcf.genes
$ head example.vcf.genes
##fileformat=VCFv4.0
#CHROMPOSIDREFALTQUALFILTERINFOGeneIDgene
1215848808rs116645811GA...7399USH2A
2126965148rs1135638GA...54148MRPL39
2126965172rs010576TC...54148MRPL39
2126965205rs1057885TC...54148MRPL39
2126976144rs116331755AG...54148MRPL39
2126976222rs7278168CT...54148MRPL39
2126976237rs7278284CT...54148MRPL39
2126978790rs75377686TC...54148MRPL39

ftp://ftp.ncbi.nih.gov/genomes/Homo_sapiens

Feel free to use bior_pretty_print instead of bior_drill to explore the data. Try drilling out other
columns. In-fact, if anything is unclear, break the command apart and run parts of the command to get a
better understanding of what steps are doing (e.g. run cat, then cat | bior_vcf_to_tjson |
bior_pretty_print, then cat | bior_vcf_to_tjson | bior_overlap |
bior_pretty_print, and so on to understand the transformations done in the pipeline).

This is a simple script based on the above technique to show the genes that contain variants in your VCF
file:

In many examples, more than one gene may overlap a variant. By default, BioR will ‘fan-out’ the rows

replicating each input row for each result in the result set.

Here is an example of a quick script to look for rsIDs in an entire exome sequencing run (followed by
variant calling formatted as VCF) where we annotate the rsID-gene relationships:

This is one way to get the variants that overlap more than one gene:

In this case, the variants are sorted, so uniq can be used directly, but in other cases, consider the unix
sort command (right before uniq). How many variants overlap at least two genes in this exome
sample?

Compressing output to enforce 1-1 semantics
Lets say we want to enforce 1-in/1-out semantics (no duplicated variants), BioR has a utility
(bior_compress) that can help with that. Here we will start directly with the rare variants. A simple
sed command replaces the counts and gets us back to rsIDs.

Now we can annotate them in much the same way as before: (or we could modify the above pipeline –
probably want to do that when we want to keep all the input data, but this gives us example variants
that overlap two genes quickly). Run this example without bior_compress to see the default
behavior when there is more than one result for a row.

5. Expanded Genes (Xrefs)
The HUGO/HGNC table has database cross-references for gene ids and names. The bior_lookup
command allows us to ‘walk’ these cross references. Here is an example:

Lookup requires that the referenced column (last by default change it with the –c flag) is an ID that has
been indexed in the source catalog. ID based indexes are stored in a directory called ‘index’ at the same
level in the filesystem as the catalog. For example, here are all of the indexes for the HGNC catalog:

Indexing Catalogs

On the RCF, the administrators are very restrictive about space, so additional indexes must be placed in
user/project space. Stand-alone installs can easily place all indexes in the index directory directly under
the directory the catalog is in. BioR allows users to make additional indexes through the
bior_index_catalog command. The help documentation contains:

Option 1, used by the BioR team to create indexes, will create the index file in the index folder in the
same directory as the catalog (as shown in the example for hgnc above). Option 2, most often used by
BioR end users, creates the index in any directory. When using an index created via the second method,
you need to adjust the lookup command appropriately. This will be covered more comprehensively in
the section on creating custom catalogs.

To make an index, use bior_pretty_print to show the contents of the catalog, and then run the index
command.

Looking Up Information about a Gene

Say we wanted to find "Approved_Symbol", "Entrez_Gene_ID", "Ensembl_Gene_ID", "UniProt_ID", and
other common alternative symbols for every gene we have in a list. We can use the BioR lookup
command:

First, we don't know the catalog Structure of HGNC, here is a way to look at the structure of a catalog:

To join the information in this catalog, to the information that we have collected in the gene table, we
need to tell bior what field in the HGNC table matches the LAST column in our sample data + annotation.
In this case, we will join on approved symbol (note: if you ever get an error with doing a lookup, you
may need an index file - look into the bior_index_catalog command documentation, using –h for help, or
contact the bior team for help – running bior commands).

Now lets extract Entrez_Gene_ID, Ensembl_Gene_ID, and UniProt_ID from the catalog:

 Example of Walking Cross References

The HGNC table does not contain information about the disease/condition, only the ID in OMIM. Lets
say you would like to also find this information for a select set of genes. In this case, we can use two

catalogs, (1) the HGNC catalog and (2) the genemap directly from OMIM. The figure below shows the
contents of the genemap catalog currently in BioR:

In this catalog, "MIM_Number" represents the OMIM id for the “Disorder” free text field describing the
disease. Given a list of genes, if we want the value of the “Disorder” field in OMIM we can cross-walk
from the gene list through the HGNC catalog to find the MIM number and then again to genemap catalog
to produce a Gene-OMIM_ID-Disorder file:

Note: period '.' always means the value was not in the dataset. So in this case, some genes are not
associated with disorders in OMIM.

Generating an OMIM Disorder Report for a Set of rsIDs

Use lookup to also find any disease/condition information in OMIM. First, the gene catalog just happens
to have the OMIM id ("MIM"), so alter the command to drill that out:

Looks like we want the column "Disorders":

OK, lets go and get some information from some variant catalogs that are not Allele frequencies:

First, dbSNP has all kinds of useful information including
"INFO.dbSNPBuildID":
"INFO.SSR": SSR 1 Integer 247,783 0.49% SNP Suspect Reason Code SNP Suspect
Reason Code, 0 - unspecified, 1 - Paralog, 2 - byEST, 3 - Para_EST, 4 - oldAlign, 5 - other. Count in
column D is non-zero
Sequence Annotation Flags
"INFO.SCS": Integer 12,533 0.02% SNP Clinical Significance SNP Suspect Reason Code, 0 -
unspecified, 1 - Paralog, 2 - byEST, 3 - Para_EST, 4 - oldAlign, 5 - other. Count in column D is non-zero
"INFO.CLN": CLN 0 Flag 31,524 0.06% SNP is Clinical Includes
LSDB,OMIM,TPA,Diagnostic
"INFO.SAO": SAO 1 Integer 14,908 0.03% SNP Allele Origin SNP Allele Origin: 0 -
unspecified, 1 - Germline, 2 - Somatic, 3 - Both. Count in column D is non-zero
"_id": The rs_id, a (near)universal identifier for the Variant.
(to see a compiled list of what is in this, go to the bsi documentation: http://bsiweb.mayo.edu/dbsnp)
This text file is a good guide (downloaded from dbSNP:
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-snp_info_tags.txt)

To match variants, use same_variant:

Now build a table with: rs_id, dbSNPBuildID, SSR, SCS, CLN, SAO, and CLN, do this:

unfortunately, the variants in this example file, did not have any results, as these annotations are rather
sparse. Finding variants with these properties can be a trick. Here is a trick that I use to cat all variants
from a specific gene:

Then to find a variant in dbSNP with an SAO annotation:

COSMIC:

Want UCSC Tracks (blacklisted)cat example.vcf | bior_vcf_to_tjson | bior_overlap --d $catalogs/ucsc/hg19/
wgEncodeDacMapabilityConsensusExcludable_GR

Ch37.tsv.bgz | bior_drill --p score | complement > example.w_ucsc.vcf

UCSC:
The UCSC catalogs related to TREAT are the following:
export ucsc=$bior/ucsc/ ;
export blacklistedFile=$ucsc/hg19/wgEncodeDacMapabilityConsensusExcludable_GRCh37.tsv.bgz ;
export repeatFile=$ucsc/hg19/rmsk_GRCh37.tsv.bgz ;
export regulationFile=$ucsc/hg19/oreganno_GRCh37.tsv.bgz ;
export uniqueFile=$ucsc/hg19/wgEncodeDukeMapabilityRegionsExcludable_GRCh37.tsv.bgz ;
export tssFile=$ucsc/hg19/switchDbTss_GRCh37.tsv.bgz ;
export tfbsFile=$ucsc/hg19/tfbsConsSites_GRCh37.tsv.bgz ;
export enhancerFile=$ucsc/hg19/vistaEnhancers_GRCh37.tsv.bgz ;
export conservationFile=$ucsc/hg19/phastConsElements46wayPrimates_GRCh37.tsv.bgz ;

To annotate with any of these files, do something like this:

unfortunately, our example file does not overlap many of these rare features. Another way to think
about this is "what genes of interest overlap some UCSC genomic feature".

This list of genes could then be used in a lookup query later, or you could cut the JSON instead of the
gene name and use that to overlap the data in your VCF file in a filtering process.

A similar technique can be use to pair down the variants based on those variants that you do NOT want
because overlapping some genomic feature would indicate it is unlikely to be significant.

Putting it all Together – Making a Genomic Feature Annotation Program

Below is a simple example of an annotation program using the simple scripts.

6. Examples Matching Alleles (bior_same_variant)

Allele Frequencies:

on the RCF:

BGI:

dbSNP:

dbSNP:

ESP:

HapMap:

 },

1000 Genomes:

Putting it All Together Building an AF Pipeline

7. Extracting Data with JSONPaths (bior_drill)

To extract data that is embedded in a JSON document as an array you can use drill.path[1] to get the
first element in the array, drill.path[1].field to get a field in a json array or drill.path[*] to get all
elements in the array.

8. Command Line Tools

Want SNPeff

Want SIFT & PolyPhen

9. Mixing In Scripts and Languages

To find all overlapping genes that are not the same gene:

10. Common Problems

Handling VCF Files with VERY large headers

All BioR commands store the header in memory. This is done because commands like bior_vcf_to_tjson
use the header to understand the structure of the data lines and parse the lines into JSON more
intelligently (e.g. identify numbers instead of strings, identify arrays, ect.). In production, we have
noticed that some headers are extreamly large (multiple megabytes). When a user runs BioR, the
header is expanded into objects in memory for each BioR command. This can lead to BioR slowing to a
crawl when the ram on the machine is exceeded. Internally what happens is that the header is chopped
off and stored in memory, then each row streams through the system as an array of strings. The data
rows are not that large, but the metadata in the header may get copied many times in memory as
transformations are done on the data. The best workaround for this problem is to use grep to cut off
all excess header lines (e.g. lines that are not descriptive) then push the BioR output on to the file.
Recombine the header if needed.

 e.g.

zcat example.vcf.gz | head -n 10000 | grep -v "##" > mylongheader.vcf

zcat example.vcf.gz | bior_vcf_to_tjson | bior_mycommands >> mylongheader.vcf

Large Memory Requirements
Sometimes users complain about large memory requrirements from BioR – especially SNPEff. SNPEff,

when run in production requires 4Gb of Ram. BioR will align large insertions and deletions prior to
sending them to SNPEff using the same exact method used in SNPEff. When processing these large
variants, both BioR and SNPEff can crash. The current work-around for dealing with large variants is to
pre-screen them and filter them out to another file prior to annotating with SNPEff. Hopefully the BioR
team will be able to collect better statistics and not align large variants in the future.

BioR exits with some error I don’t understand
Rerun the same exact command with logging enabled (-l) and submit both the input file, and the results
of the log to the BioR team. We will try to help you ASAP.

11. Creating Catalogs

Indexing your Samples
Lets say you want to get variants in your sample that overlap a gene. One way to do this is to stream
the variants e.g:

If you just want variants that overlap any gene, you can always do something like:

That works fine for a single gene, but what if you are starting with a list of genes? e.g.

In this case you may want to use an index on your data. To create the index, do something like:

Now use lookup to get the gene locations, and overlap to overlap those locations with your data:

You can now use bior_same_variant to annotate variants that overlap your genes.

Creating Custom Catalogs
One of the most powerful things about BioR is that users can publish their own catalogs and integrate
new data into the system. They can also share these catalogs with others making the system extensible
and much more powerful than a system where the catalogs must all be maintained by a single
annotation team.

The Publication Process
Publishing a catalog requires (1) a parser that understands arbitrarily formatted file formats, and (2)
indexing tools. Parsers convert arbitrary data representations into JSON with a set of 'golden
identifiers' the BioR system understands. Example 'golden identifiers’ include _landmark, _minBP, and
maxBP. 'Golden identifiers' are always prefixed with an underscore ('') and must be absolutely
consistent at both in terms of syntax and semantics. For example, _minBP uses the standard 1-based
coordnate system (e.g. NCBI/Blast) not interbase coordinates
(http://gmod.org/wiki/Introduction_to_Chado#Interbase_Coordinates), and _strand is represented as
'+', '-', or '.' and NOT 'complement' as in the gbs files from NCBI. One of the functions of a parser, is to
convert from arbitrary file formats into JSON, the other is to extract the 'golden identifiers' and place
them in the JSON. 'Golden identifiers' are created so that BioR programs (e.g. bior_overlap.sh) can
work on the information regardless of the source file format (e.g. VCF, GFF, GBS, XML, RelationalDB,
Tab-Delimited, ...).
As they become availible, parsers, will be exposed to users as command line tools. For example,
bior_vcf_to_variants.sh is a parser that converts vcf to BioR JSON.

In summary, to make a custom catalog, you need:

1. Columns 1-3 bed-like (chr start stop) [1-based]
2. The 4th column is a series of key-value pairs enclosed by quotes and brackets
3. The 4 column contains “Golden identifiers” [_landmark, _minBP, and _maxBP]

Once this is created, use bgzip & tabix to compress and index it for genomic search. For those samples
that do NOT have a genomic position, use the following values (bior_create_catalog will do this
for you).

Golden Identifier Default Value
_landmark UNKNOWN (a period ‘.’ is also ok)
_minBP 0
_maxBP 0

Zero is important because it has to be an integer and must be greater than zero. The JSON
does not have to have the golden attribute if you won't search on it.

Parsing and Converting the Data
If a parser for the file format is available (e.g. bior_vcf_to_tjson, bior_bed_to_tjson, ect.)
publishing a custom catalog is extremely easy. Using the standard BioR tools, a publication pipeline can
be constructed rapidly. For example:

http://www.google.com/url?q=http%3A%2F%2Fgmod.org%2Fwiki%2FIntroduction_to_Chado%23Interbase_Coordinates&sa=D&sntz=1&usg=AFQjCNGkjeVxm7ra-91CE3ZAoC0vO59tgw

This pipeline streams the original VCF file past the parser (bior_vcf_to_tjson), removes the content of the
original VCF (cut -f 9) - this is ok, as all of this information is duplicated in the JSON format, drill out the
key attributes (bior_drill.sh) so that they can be indexed, and then output to a raw data file (dbSNP.tsv).
The raw output file should look like this:

Indexing the Data for Coordinate Based Search

For positional search, BioR supports indexing using Tabix. Tabix/bgzip should be installed in the RCF
environment. First, compress the raw input. Assuming it is sorted:

Then run the tabix command:

That's it! you can now use your custom catalog as a database in BioR commands (e.g. bior_overlap.sh -d
/path/to/your/database.tsv.gz).

Hints on Creating Indexes on Custom Catalogs

In addition to coordinate based search, users may also want to search a custom catalog
based on IDs. The process is exactly the same as in indexing a catalog described earlier in

this document, but there are some gotcha’s that users need to be aware of.
1. The catalog structure will not automatically join data. This can be frustrating as the data

provider may not give the data to you in a desirable form (e.g. you may want to know everything
the data provider knows about a gene, but they may have their data organized by variant or
drug) so you will have to ‘flip’ the data around so that all information about a gene can be
provided to users of your catalog. The BioR team has done this many times, and for Java
programmers, there is a robust library (BioR-Catalog) and examples to help in the publication of
new-complex catalogs.

2. The BioR indexer command currently does not tolerate duplicate keys, so while duplicate keys
can be in the data itself, you can’t index on those keys. Running bior_index_catalog with logging
enabled will help to ensure the keys you would like to index on are valid. To index multiple ways
simultaneously, multiple catalogs need to be created

3. Regardless of what tools are used to construct the JSON column, it must validate as proper JSON.
Use jslint to validate: http://jsonlint.com/

4. JSON should not contain fields that are empty. While adding period “.” As the value for a given
key will work, it wastes space and consumes additional CPU resources so is not recommended.

Use BioR to map SNP on rsID and find overlapping genes.
Say we obtained a simple tab-delimited file that is not in VCF format, but we still want to obtain an
annotation. The following file’s header for this is: rsid without the “rs”, chrom, position, and 0/1
representing presence or absence in our study. There are over 5 million in this file. The goal is to show
how the first 100 or 1000 of these map to various genes

http://www.google.com/url?q=http%3A%2F%2Fjsonlint.com%2F&sa=D&sntz=1&usg=AFQjCNGFupkrrSIf40i1lDf2j5uScaM6BA
http://www.google.com/url?q=http%3A%2F%2Fjsonlint.com%2F&sa=D&sntz=1&usg=AFQjCNGFupkrrSIf40i1lDf2j5uScaM6BA

Try playing around with something like this to get started: (it may not be exactly what you want but we
can work on that)

NCBIGene:

Now, we want to find "Approved_Symbol", "Entrez_Gene_ID", "Ensembl_Gene_ID", "UniProt_ID", ...
We can use the BioR lookup command:

First, we don't know the catalog Structure of HGNC, here is a way to look at the structure of a catalog:

Case Study: Creating a Report that Maps rsIDs to Genes.

To join the information in this catalog, to the information that we have collected in the gene table, we
need to tell bior what field in the HGNC table matches the LAST column in our sample data + annotation.
 In this case, we will join on approved symbol (note: if you ever get an error with doing a lookup, you
may need an index file - look into the bior_index_catalog command or contact the bior team for help).

12. Sun Grid Engine

This section gives tips on how to configure a Sun Grid Engine (SGE) job to request the right amount of
resources to successfully execute one or more BioR toolkit commands.

Multiple Cores
By default, an SGE job will run on a single core. It’s possible to run a job on multiple cores is specified
via the qsub command’s parallel environment option “pe”.

pe parallel_environment n[[m]]|[]m,...

To get a list of available parallel environments setup by your SGE admin:

> qconf spl

fluent_pe
make
mpich2_141_hydra
mpich2_mpd
namd2
openmpi
pvm
pvmtight
threaded

Here is an example of requesting 4 cores for a job:

> qsub pe threaded 4

The following table gives recommend core values for toolkit commands.

Command Cores Notes

Arbitrary UNIX commands 0 examples: /bin/cat, /bin/grep, /bin/cut

bior_vcf_to_tjson 1

bior_overlap 1

bior_same_variant 1

bior_lookup 1

bior_drill 1

bior_compress 1

bior_vep 2 Warning: Variant Effect Predictor is
implemented using PERL. The virtual
memory for the PERL process grows
linearly with more variants.

bior_snpeff 2 SnpEff loads data into memory for
performance

bior_annotate 29 Annotate performs many commands in
parallel

bior_pretty_print 1

Virtual Memory
Virtual memory is specified via the qsub command’s resource request list option “l”.

l resource=value,...

NOTE: Resources specified with this option are per-core. If your job uses 2 cores, you will need to
divide the resource value by 2.

For virtual memory, the resource name to use is h_vmem. Here is an example of requesting 10MB of
virtual memory for a job running on 1 core:

> qsub l h_vmem=10M

The following table gives recommend virtual memory values for toolkit commands.

Command Virtual
Memory

Notes

Arbitrary UNIX commands 100M examples: /bin/cat, /bin/grep, /bin/cut

bior_vcf_to_tjson 600M

bior_overlap 600M

bior_same_variant 600M

bior_lookup 600M

bior_drill 600M

bior_compress 600M

bior_vep 1200M* Warning: Variant Effect Predictor is
implemented using PERL. The virtual
memory for the PERL process grows
linearly with more variants.

bior_snpeff 5100M SnpEff loads data into memory for
performance

bior_annotate 24000M

bior_pretty_print 225M

Resources for a Toolkit Pipeline
This section describes how to request the right resources for a multi-command Toolkit pipeline.
Here is an example script that will be submitted to SGE:

> cat example.sh

#!/bin/sh

dbSNP 137 catalog
DBSNP_CATALOG=/path/to/catalogs/dbSNP/137/00All_GRCh37.tsv.bgz

run toolkit pipeline to annotate my variants with dbSNP rsIDs
cat data.vcf | bior_vcf_to_tjson | bior_same_variant d $DBSNP_CATALOG | bior_drill p INFO.ID

The number of cores needed to run this script’s processes in parallel can be calculated by referencing
the table in the Multiple Cores section. The example script will require 3 cores to run optimally.

Command Cores

example.sh 0

/bin/cat 0

bior_vcf_to_tjson 1

bior_same_variant 1

bior_drill 1

The virtual memory needed to run this script can be calculated by referencing the table in the Virtual
Memory section. The example script will require 2000M of virtual memory (100 + 100 + 600 + 600 +
600).

Command Virtual
Memory

example.sh 100M

/bin/cat 100M

bior_vcf_to_tjson 600M

bior_same_variant 600M

bior_drill 600M

The virtual memory setting h_vmem is specified on a per-core basis. Since example.sh will be using 3
cores and 2000MB of virtual memory total, h_vem is 2000/3 or roughly 670.

Here is the final qsub command with the correct resource requirements:

> qsub q MY_QUEUE l h_vmem=670M pe threaded 3 v PATH,BIOR_LITE_HOME example.sh

